
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

UNIVERSITY of MOHAMED KHIDER, BISKRA

FACULTY of EXACT SCIENCES NATURAL and LIFE SCIENCES

DEPARTMENT of MATHEMATICS

Thesis for the fulfilment of the requirements of:

MASTER degree in Applied Mathematics

Option: Analysis

Presented by

Hilal Ardjani

Topic:

Numerical methods for singularly perturbed
differential equations

Jury committee members:

Dr. Naceur Rahmani UMKB President

Dr. Abdelkader Laiadi UMKB Supervisor

Dr. Fatma Kaci UMKB Examiner

Juin 2022



.

 



Dedicace

I Dedicate this work to

My Parents

My Brother and My Sister

My Uncle in the eternal memory

All My Family

Liverpool

i



ACKNOWLEDGEMENTS

First and foremost, I would like to praise Allah the Almighty, the Most Gracious, and

the Most Merciful for His blessing given to me during my study and in completing

this work.

I would particularly like to express my deep gratitude and thanks to my supervisor

Dr. Abdelkader Laiadi for his careful guidance, insightful discussions, constructive

comments, valuable suggestions, and making me feel free to express my views.

Furthermore, I would like to express my sincere thanks to Dr. Naceur Rahmani and

Dr. Fatma Kaci who kindly agreed to serve on my thesis committee.

I would also like to thank my ex-supervisor Dr. Houda Hassouna for the suggestion

of the thesis topic, wishing to her a speedy recovery.

Special thanks to Dr. Hanane Ben Gherbal for her advice, encouragement,

motivations and constant support.

Thanks also go to all the members of Mathematics Department for their technical

support.

This work would not have been possible without the invaluable moral support and

unfailing faith of my parents, my ultimate thanks for them.

Finally, I would like to express my thanks to my family, my friends, my colleagues and

all persons who helped me during the realization of this work.

Hilal Ardjani

ii



Contents

ACKNOWLEDGEMENTS ii

Contents iii

List of Figures v

List of Abbreviations vi

Notations vii

Introduction 1

1 The Analytical Behaviour of Solutions 3

1.1 Position of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Stability Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Finite Difference Methods 17

2.1 Classical Convergence Theory for Central Differencing . . . . . . . . . 17

2.2 Upwind Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Matlab Implementaion . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



Contents

3 The Collocation Method 40

3.1 Introduction and Homogenization . . . . . . . . . . . . . . . . . . . . . 40

3.2 Energetic Robin Boundary Functions Method . . . . . . . . . . . . . . 42

3.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Conclusion 50

Bibliography 51

Abstract 53

iv



List of Figures

1.1 Solution of Example 1.1.2 with a boundary layer at x = 1 for ε = 10−2. 6

1.2 Solution of Example 1.1.3 with a boundary layer at x = 0 for ε = 10−2. 7

2.1 Numerical solution of Example 2.3.1 using central difference scheme for

ε = 10−2 and n = 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Error on the computed solution of Example 2.3.1 using central difference

scheme for ε = 10−2 and n = 103. . . . . . . . . . . . . . . . . . . . . 37

2.3 Comparing the numerical solutions with the exact solution of Example

2.3.1 using central difference scheme for ε = 10−3 and n = 102 and

showing error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Comparing the numerical solutions with the exact solution of Example

2.3.1 using upwind scheme for ε = 10−3 and n = 102 and showing error. 38

2.5 Comparing the numerical solutions with the exact solution of Example

2.3.1 using upwind scheme for ε = 10−2 and n = 200 and showing error. 39

3.1 Comparing the numerical solutions of Example 3.3.1 obtained by the

ERBFM with the exact solutions and showing the errors. . . . . . . . . 48

3.2 Comparing the numerical solutions of Example 3.3.2 obtained by the

ERBFM with the exact solutions and showing the errors. . . . . . . . . 49

v



List of Abbreviations

ODE : Ordinary Differential Equation

BVP : Boundary Value Problem

SPP : Singular Perturbation Problem

SPDE : Singularly Perturbed Differential Equation

SPBVP : Singularly Perturbed Boundary Value Problem

FDM : Finite Difference Method

ERBFM : Energitic Robin Boundary Functions Method

vi



Notations

L : differential operator

L∗ : adjoint operator

f(v) : functional f applied to v

C l(Ω) : function space

Lp(Ω) : function space, 1 ≤ p ≤ ∞

∥ · ∥Lp or ∥ · ∥∥0,p : norm in Lp(Ω)

∥ · ∥Lp(Ω),d : discrete norm in Lp(Ω)

ε : singular perturbation parameter

C : generic constant, independent of ε

O(·), o(·) : Landau symbols

h : mesh parameter in space

Lh : difference operator

u, uh, ui : unknown(s)

u0 : reduced solution

D+, D− : forward and backward difference operators

D0, D+D− : central difference operators

vii



Introduction

Imagine a river? a river flowing strongly and smoothly. Liquid pollution pours

into the water at a certain point. What shape does the pollution stain form on the

surface of the river?

Two physical processes operate here: the pollution diffuses slowly through the

water, but the dominant mechanism is the swift movement of the river, which rapidly

convects the pollution downstream. Convection alone would carry the pollution along a

one-dimensional curve on the surface; diffusion gradually spreads that curve, resulting

in a long thin curved wedge shape.

When convection and diffusion are both present in a linear differential equation

and convection dominates, we have a convection-diffusion problem.

The simplest mathematical model of a convection-diffusion problem is a two-point

boundary value problem (BVP) of the form

−εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1,

with u(0) = u(1) = 0, where ε is a small positive parameter and a, b and f are some

given functions. Here the term u′′ corresponds to diffusion and its coefficient −ε is

small. The term u′ represents convection, while u and f play the rôle of a source and

driving term respectively. (See [11] for a detailed explanation about the modelisation

of diffusion and convection by second order and first-order derivatives respectively. )
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Introduction

The study of singularly perturbed differential equations (SPDE) is so important

and it appears in several branches of engineering and applied mathematics.

Numerical analysis and asymptotic analysis are the two principal approaches for

solving singular perturbed problems, numerical analysis tries to provide quantitative

information about a particular problem, whereas the asymptotic analysis tries to gain

insight into the qualitative behavior of a family of problems and only semi-quantitative

information about any particular member of the family.

Numerical methods are intended for a broad class of problems and to minimize

demands upon the problem solver.

Asymptotic methods treat comparatively restricted class of problems and require

the problem solver to have some understanding of the behavior of the solution. Since the

mid-1960s, singular perturbations have nourished, the subject is now commonly a part

of graduate students training in applied mathematics and in many fields of engineering.

In this work we are interested in the study of the singularly perturbed two-point bound-

ary value problems with presenting methods for their numerical solutions. The thesis

is structured as follows

The first Chapter begins by positioning the problem with an exposition of the technique

of matched asymptotic expansions.

In the second Chapter we present the Finite Difference methods (FDM), classical and

upwind schemes are studied, and we propose a Matlab implementation which is tested

in some examples for the purpose of comparison.

In the last Chapter, we discuss the Collocation method based on Energitic Robin bound-

ary functions, and we compare the obtained results by Liu and Li in [4] with the results

of the FDM using the upwind schemes on the same example.

2



Chapter 1

The Analytical Behaviour of

Solutions

In this Chapter we shall discuss the linear singularly perturbed boundary value

problem (SPBVP) for Ordinary Differential Equations.

1.1 Position of the Problem

Consider the linear SPBVP

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) for x ∈ (d, e),

with the boundary conditions

αdu(d)− βdu
′(d) = γd,

αeu(e)− βeu
′(e) = γe.

3



Chapter 1. The Analytical Behaviour of Solutions

Where 0 < ε << 1 is a small parameter, the functions b, c and f are continuous. The

constants αd , αe , βd , βe, γd and γe are given.

In general, we can obtain an equivalent problem with homogeneous boundary conditions

γd = γe = 0 by choosing a smooth function ψ which satisfies the original boundary

conditions and substracting it from u.

Example 1.1.1 Given Dirichlet boundary conditions u(d) = γd and u(e) = γe, we take

ψ(x) = γd
x− e

d− e
+ γe

x− d

e− d
,

now set u∗(x) = u(x) − ψ(x). Then u∗ is the solution of a differential equation of the

same type but with homogeneous boundary conditions.

We can also without loss of generality assume that x ∈ [0, 1] by means of the linear

transformation

x 7→ x− d

e− d
.

The analytical behaviour of the solution of a SPBVP depends on the nature of the

boundary conditions, and when these conditions are Dirichlet it becomes the most

complicated case from the numerical analyst’s point of view, We consequently pay

scant attention to other cases.

Then we investigate in next sections the singularly perturbed problem

Lu : = −εu′′ + b(x)u′ + c(x)u = f(x) for x ∈ (0, 1), (1.1a)

u(0) = u(1) = 0, with c(x) ≥ 0 for x ∈ [0, 1] , (1.1b)

under the same conditions on ε, b, c and f stated earlier.

Remark 1.1.1 The problem (1.1) is a typical convection diffusion problem, because in

general we assume that b is not identically zero.

4



Chapter 1. The Analytical Behaviour of Solutions

Then let us state the following useful lemma.

Lemma 1.1.1 (Comparaison principle) Suppose that v and w are functions in

C2(0, 1) ∩ C[0, 1] that satisfy

Lv(x) ≤ Lw(x), for all x ∈ (0, 1),

and v(0) ≤ w(0), v(1) ≤ w(1) . Then

v(x) ≤ w(x) for all x ∈ [0, 1] .

At this stage we have existence and the comparison principle ensures uniqueness of the

solution u of (1.1), but we know nothing about its behaviour as ε tends to zero.

Remark 1.1.2 The condition c ≥ 0 cannot in general be eliminated, it’s evident from

the problem

−εu′′ + λu = 0 on (0, 1), u(0) = u(1) = 0,

which has multiple solutions when λ < 0.

For a first insight into the structure of u when ε is small, we study a simple example.

Example 1.1.2 The boundary value problem


−εu′′ + u′ = 1 on (0, 1) ,

u(0) = u(1) = 0,

has the solution

u(x) = x−
exp

(
−1− x

ε

)
− exp

(
−1

ε

)
1− exp

(
−1

ε

) .

5



Chapter 1. The Analytical Behaviour of Solutions

Hence for a ∈ [0, 1)

lim
x→a

lim
ε→0

u(x) = a = lim
ε→0

lim
x→a

u(x),

but

1 = lim
x→1

lim
ε→0

u(x) ̸= lim
ε→0

lim
x→1

u(x) = 0.

This inequality means that the problem is singularly perturbed and that the solution

changes abruptly as x approaches 1, and we say that there is a boundary layer at x = 1

(See Figure 1.1).
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u(
x)
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Figure 1.1: Solution of Example 1.1.2 with a boundary layer at x = 1 for ε = 10−2.

Example 1.1.3 Modifying the sign of b gives the problem


−εu′′ − u′ = 1 on (0, 1) ,

u(0) = u(1) = 0.
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Chapter 1. The Analytical Behaviour of Solutions

The change of variable x 7→ 1 − x transforms the problem to the problem in Example

1.1.2. Hence

u(x) = 1− x−
exp

(
−x
ε

)
− exp

(
−1

ε

)
1− exp

(
−1

ε

) ,

and the boundary layer develops in the neighbourhood of x = 0. (See Figure 1.2)
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Figure 1.2: Solution of Example 1.1.3 with a boundary layer at x = 0 for ε = 10−2.

Can we find a simple known function as an approximation for the solution u

of (1.1)? Yes, by using The Method Of Matched Asymptotic Expansions which is a

standard technique in the theory of singular perturbations.
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Chapter 1. The Analytical Behaviour of Solutions

1.2 Asymptotic Expansions

The constructed function by this technique is an asymptotic expansion of u, it illumi-

nates its nature, and thus is valuable information. First let us recall a basic definition.

Definition 1.2.1 The function uas is an asymptotic expansion of order m of u, if there

is a constant C such that

|u(x)− uas(x)| ≤ Cεm+1 for all x ∈ [0, 1] and all ε sufficiently small.

In the construction of uas for (1.1), we assume that b, c and f are sufficiently smooth

on [0, 1]. Then the first step is to try to find a global (or regular or outer) expansion

ug, which is a good approximation of u away from any layer(s). We set

ug(x) =
m∑

ν=0

ενuν(x), (1.2)

where the uν(x) are yet to be determined (Here, as for regular perturbations, we try to

expand the solution in a Taylor-type series). By formally setting ε = 0 in L we define

L0v := bv′ + cv.

Substituting ug into (1.1) and comparing powers of ε, we see that we need

L0u0 = f,

L0uν = u′′ν−1 for ν = 1, . . . ,m.

Zeros of b are called turning points, if b(x) has a zero in [0, 1] it will be difficult

to define the coefficients uv of the global expansion. We study only linear second order

problems without turning points, and for more other cases we refer the reader to [9].

8



Chapter 1. The Analytical Behaviour of Solutions

Suppose that b(x) ̸= 0 for all x ∈ [0, 1], then in principle we can calculate u0, u1, . . . , um

explicitly, provided that we have an additional condition for each unknown to ensure

its uniqueness. We should use one of the boundary conditions (1.1b) to define u0, so

the crucial question is: which one should we discard? Guided by Example 1.1.2, we

state the following cancellation law, which tells us which boundary condition to drop.

• If b > 0, then the boundary layer is located at x = 1, and we cancel the boundary

condition at x = 1.

• If b < 0 then the boundary layer is located at x = 0 and the boundary condition

at x = 0 is dropped.

Remark 1.2.1 The transformation x 7→ 1− x reduces the case b < 0 to b > 0; thus it

suffices to study the case b > 0 in detail.

The coefficients in the global expansion ug are defined by

L0u0 = f, u0(0) = 0, , (1.3a)

L0uν = u′′ν−1, uν(0) = 0 for ν = 1, . . . ,m. (1.3b)

We call (1.3a) the reduced problem and u0 is the reduced solution.

The condition u0(0) = 0 comes from (1.1b), while the conditions uν(0) = 0 for ν ≥ 1

ensure that ug(0) = u(0).

The aim of the method is to construct an approximation of u for all x ∈ [0, 1]. But ug

is not such an approximation, as it fails to satisfy the boundary condition at x = 1.

Therefore we add a local correction to ug near x = 1. we notice that the difference

w = u− ug satisfies

Lw = εm+1u′′m,

w(0) = 0, w(1) = −
m∑

ν=0

ενuν(1).

9



Chapter 1. The Analytical Behaviour of Solutions

Write L = εL1 + L0. Recalling that a local correction is needed near x = 1, where u

has a boundary layer, we introduce a change of scale by using the local variable

ξ =
1− x

δ
, where δ > 0 is small.

We choose δ so that L0 and εL1 have formally the same order, with respect to ε, after

the independent variable is transformed from x to ξ. That is, since b ̸= 0, one sets

εδ−2 ≈ δ−1,

this leads to the choice ε = δ.

In terms of the new variable ξ, we use Taylor expansions to write

b(1− εξ) =
∞∑
ν=0

bνε
νξν , with b0 = b(1),

c(1− εξ) =
∞∑
ν=0

cνε
νξν , with c0 = c(1).

Consequently, for any sufficiently differentiable function g, we can express L in terms

of ξ as

εL1g + L0g =
1

ε

∞∑
ν=0

ενL∗
νg,

with
L∗
0 := − d2

dξ2
− b0

d

dξ
,

L∗
1 := −b1ξ

d

dξ
+ c0,

etc.

Now we introduce the local expansion

vloc(ξ) =
m+1∑
µ=0

εµvµ(ξ), (1.4)

10



Chapter 1. The Analytical Behaviour of Solutions

In order that vloc approximates w = u− ug, the local corrections vµ should satisfy the

boundary layer equations

L∗
0v0 = 0, (1.5a)

L∗
0vµ = −

µ∑
κ=1

L∗
κvµ−κ, for µ = 1, . . . ,m+ 1. (1.5b)

To correct the boundary conditions at x = 1, we need vκ(0) = uκ(1). for κ = 0, 1, . . . ,m.

As the differential equations (1.5) are of second order, so two boundary conditions are

needed. The second condition must guarantee the local character of the local correction,

one requires that lim
ξ→∞

vµ(ξ) = 0. With these two boundary conditions the problem (1.5)

has a unique solution, because the characteristic equation corresponding to L∗
0 is

−λ2 − b(1)λ = 0,

which has exactly one negative root. For example, the first-order correction v0 is

v0(ξ) = −u0(1)e−b(1)ξ.

Remark 1.2.2 A critical question in this method is whether or not the equations (1.5)

for the local correction possess a number of decaying solutions that is equal to the

number of boundary conditions that are not satisfied by the global approximation. If one

cancels the wrong boundary condition when defining the reduced problem, this can lead

to boundary layer equations without decaying solutions and the method then fails.

Theorem 1.2.1 If the coefficients and the right-hand side of the boundary value prob-

lem (1.1) are sufficiently smooth and b(x) > β > 0 on [0, 1], then its solution u has a

matched asymptotic expansion of the form

uas(x) =
m∑

ν=0

ενuν(x) +
m∑

µ=0

εµvµ

(
1− x

ε

)
, (1.6)

11



Chapter 1. The Analytical Behaviour of Solutions

such that for any sufficiently small fixed constant ε0 one has

|u(x)− uas(x)| ≤ Cεm+1 for x ∈ [0, 1] and ε ≤ ε0.

Here C is independent of x and ε.

Proof. We first consider

u∗as(x) :=
m∑

ν=0

ενuν(x) +
m+1∑
µ=0

εµvµ

(
1− x

ε

)
.

Based on our construction, we have

L (u− u∗as) = O
(
εm+1

)
,

(u− u∗as) (0) = O (εκ) , (u− u∗as) (1) = O
(
εm+1

)
,

where κ > 0 is arbitrary. Now apply the comparison principle of Lemma 1.1.1 with the

barrier function w(x) = Cεm+1(1+x) this choice of w exploits the property b ≥ b0 > 0.

This leads to

|(u− u∗as) (x)| ≤ |w(x)| ≤ Cεm+1 for all x ∈ [0, 1].

But

|uas(x)− u∗as(x)| =
∣∣εm+1vm+1((1− x)/ε)

∣∣ ≤ Cεm+1,

so a triangle inequality completes the argument.

A formal differentiation of (1.6) leads to the following conjecture:

If b, c and f are sufficiently smooth and b > 0 (so turning points are excluded), the

12



Chapter 1. The Analytical Behaviour of Solutions

solution u of the boundary value problem (1.1) satisfies

∣∣u(i)(x)∣∣ ≤ C

[
1 + ε−i exp

(
−b(1)1− x

ε

)]
.

1.3 Stability Estimates

If the coefficients of the boundary value problem (1.1) are sufficiently smooth and

no turning points are present, then the asymptotic expansion procedure will describe

precisely the behaviour of the solution u as ε→ 0.

If however any of these hypotheses are violated then this approach may fail, so we now

present an alternative source of information about u and its derivatives.

The comparison principle provides a simple proof of the typical stability inequality

∥v∥∞ ≤ C∥Lv∥∞, for all v with v(0) = v(1) = 0, (1.7a)

under the assumption that b(x) ≥ b0 > 0, where

∥z∥∞ := max
x∈[0,1]

|z(x)|,

Indeed, w(x) = (1 + x)C∥Lv∥∞ is a barrier function for v.

Note that the stability constant C in (1.7a) is independent of ε. When applied to the

exact solution u, (1.7a) yields

∥u∥∞ ≤ C∥f∥∞. (1.7b)

We have here a typical result: a stability inequality implies an a priori estimate for the

exact solution. The inequality (1.7b) tells us that u is bounded, uniformly with respect

13



Chapter 1. The Analytical Behaviour of Solutions

to ε, in the maximum norm.

The numerical analysis of discretization methods requires information about the deriva-

tives of u. We therefore present a lemma of an a priori estimate for u′ and a stability

result stronger than (1.7a).

Lemma 1.3.1 Assume that b(x) > β > 0 and b, c , f are sufficiently smooth.

Then for i = 1, 2, . . . , q the solution u of (1.1) satisfies

∣∣u(i)(x)∣∣ ≤ C

[
1 + ε−i exp

(
−β 1− x

ε

)]
for 0 ≤ x ≤ 1,

where the maximal order q depends on the smoothness of the data.

Proof. Set h = f − cu. Using an integrating factor we integrate −εu′′ + bu′ = h twice,

obtaining

u(x) = up(x) +K1 +K2

∫ 1

x

exp
(
−ε−1(B(1)−B(t))dt ,

where

up(x) := −
∫ 1

x

z(t)dt, z(x) :=

∫ 1

x

ε−1h(t) exp
(
−ε−1(B(t)−B(x))

)
dt,

B(x) :=

∫ x

0

b(t)dt,

here the constants of integration (K1 and K2) may depend on ε.

The boundary condition u(1) = 0 implies that K1 = 0. We see that u′(1) = −K2. Now

u(0) = 0 gives

K2

∫ 1

0

exp
[
−ε−1(B(1)−B(t))

]
dt = −up(0).

The bound (1.7b) implies that

|z(x)| ≤ Cε−1

∫ 1

x

exp
(
−ε−1(B(t)−B(x))

)
dt.

14



Chapter 1. The Analytical Behaviour of Solutions

Applying the inequality

exp
(
−ε−1(B(t)−B(x)) ≤ exp

(
−b0ε−1(t− x)

)
for x ≤ t ,

we obtain

|z(x)| ≤ Cε−1

∫ 1

x

exp
(
−b0ε−1(t− x)

)
dt ≤ C.

Hence |up(0)| ≤ C. Set b̄ = maxx∈[0,1] b(x) Then

∫ 1

0

exp
(
−ε−1(B(1)−B(t))dt

)
≥

∫ 1

0

exp
(
−b̄ε−1(1− t)

)
dt ≥ Cε.

It now follows that

|K2| ≤ Cε−1.

Finally

u′(x) = z(x)−K2 exp
(
−ε−1(B(1)−B(x))

)
,

implies that

|u′(x)| ≤ C

(
1 + ε−1 exp

(
−b0

1− x

ε

))
.

The proof for i > 1 follows by induction and repeated differentiation of (1.1).

From Lemma 1.3.1 we have immediately

Corollary 1.3.1 .∫ 1

0

|u′(x)| dx ≤ C.

Hence we state the following result

Theorem 1.3.1 Let us assume that

1. c, f ∈ L1(0, 1),

2. b ∈ L∞[0, 1], b(x) ≥ b0 > 0.

15



Chapter 1. The Analytical Behaviour of Solutions

Then (1.1) is strongly uniformly stable for 0 < ε ≤ ε0 , that is,

∥u∥∞ + ε ∥u′∥∞ ≤ C∥Lu∥L1∗ . (1.8)

In Theorem 1.3.1 the term ε ∥u′∥∞ can be replaced by the L1 norm of u′, as we now

show.

Theorem 1.3.2 Under the assumptions of Theorem 1.3.1 , the operator L satisfies the

stability estimate

∥u∥∞ + ∥u′∥L1
≤ C∥Lu∥L1 . (1.9)

Proof. See [8].

16



Chapter 2

Finite Difference Methods

In this chapter we will present and analyse the finite difference methods for

singularly perturbed differential equations.

2.1 Classical Convergence Theory for Central Dif-

ferencing

In order to introduce the basic terminology of finite difference methods we first present

the fundamental ideas and notations used for classical (non-singularly perturbed) two-

point boundary value problems. Let us consider the linear two-point boundary value

problem

Lu := −u′′ + b(x)u′ + c(x)u = f(x), u(0) = u(1) = 0, (2.1)

under the assumptions that b, c and f are smooth and c(x) ≥ 0.

Finite difference methods will be studied on an equidistant grid with mesh size h = 1/N ;

that is, we set

xi = ih for i = 0, 1, . . . , N, with x0 = 0 and xN = 1.

17



Chapter 2. Finite Difference Methods

A finite difference method is a discretization of the differential equation using the grid

points xi, where the unknowns ui (for i = 0, . . . , N) are approximations of the values

u(xi). It is natural to approximate u′(x) by the central difference

(
D0u

)
(x) := [u(x+ h)− u(x− h)]/(2h).

Composing the forward and backward differences

(
D+u

)
(x) := [u(x+ h)− u(x)]/h and

(
D−u

)
(x) := [u(x)− u(x− h)]/h,

yields the following central approximation for u′′(x)

(
D+D−u

)
(x) := [u(x+ h)− 2u(x) + u(x− h)]/h2.

The order of accuracy of every finite difference approximation depends on the smooth-

ness of u. For instance, Taylor’s formula yields

u(x± h) = u(x)± hu′(x) + h2
u′′(x)

2
± h3

u′′′(x)

6
+R4,

with

R4 =

∫ x±h

x

[u′′′(ξ)− u′′′(x)]
(x± h− ξ)2

2
dξ.

Hence ∣∣(D+D−u
)
(x)− u′′(x)

∣∣ ≤ Kh2 if u ∈ C4, (2.2)

and we say that D+D− is second-order accurate, which is sometimes written as O(h2)

accurate. Using the notation

gi = g (xi) , where g can be b, c or f.
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The classical central difference scheme for the boundary value problem (2.1) is

−D+D−ui + biD
0ui + ciui = fi for i = 1, . . . , N − 1, (2.3a)

u0 = uN = 0. (2.3b)

This is a tridiagonal system of linear equations:

riui−1 + siui + tiui+1 = fi for i = 1, . . . , N − 1, with u0 = uN = 0, (2.4)

where

ri = − 1

h2
− 1

2h
bi, si = ci +

2

h2
, ti = − 1

h2
+

1

2h
bi. (2.5)

Two questions must now be tackled: what properties does the discrete problem (2.3)

enjoy? What can we say about the errors |u (xi)− ui|?

Classical convergence theory for finite difference methods is based on the complementary

concepts of consistency and stability. First, formally write (2.3) (or any difference

scheme) as

Lhuh = fh, (2.6)

where Lh is a matrix, and we have


uh := (uh (x0) , uh (x1) , . . . , uh (xN))

T := (u0, u1, . . . , uN)
T ,

fh := (f (x0) , f (x1) , . . . , f (xN))
T .

Functions defined on the grid such as uh and fh, are called grid functions. The restriction

of a function v ∈ C[0, 1] to a grid function is denoted by Rhv , viz.,

Rhv = (v (x0) , v (x1) , . . . , v (xN)) .
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We sometimes omit Rh when the meaning is clear. The discrete maximum norm on the

space of grid functions is

∥vh∥∞,d := max
i

|vh (xi)|.

Definition 2.1.1 Consider a difference scheme of the form Lhuh = Rh(Lu), where we

incorporate the boundary conditions into the scheme by taking the first and last rows

of Lh to be identical to the first and last rows respectively of the identity matrix, with

(RhLu)0 = u0 and (RhLu)N = uN . This scheme is consistent of order k in the discrete

maximum norm if

∥LhRhu−RhLu∥∞,d ≤ Khk,

where the positive constants K and k are independent of h.

As in (2.2) we can apply Taylor’s formula to prove

Lemma 2.1.1 Under the assumption u ∈ C4[0, 1], the central difference scheme (2.3)

is consistent of order two.

Applying the discrete operator Lh to the error at the interior grid points yields

Lh (Rhu− uh) = LhRhu− fh = LhRhu−RhLu. (2.7)

In order to estimate Rhu − uh from (2.7) and the consistency order, it is natural to

introduce the concept of stability.

Definition 2.1.2 A discrete problem Lhuh = fh is stable in the discrete maximum

norm, if there exists a constant K (the stability constant) that is independent of h, such

that

∥uh∥∞,d ≤ K ∥Lhuh∥∞,d , (2.8)

for all mesh functions uh.
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Our last ingredient is the following

Definition 2.1.3 A difference method for (2.1) is convergent (of order k) in the discrete

maximum norm if there exist positive constants K and k that are independent of h for

which

∥uh −Rhu∥∞,d ≤ Khk.

The main result of classical convergence theory for finite difference methods now follows

immediately

Consistency + Stability =⇒ Convergence.

The investigation of the order of consistency is usually based on Taylor’s formula and

is straightforward. But to prove stability one needs some new tools.

The material that follows uses the natural ordering of vectors, viz., x ≤ y if and only if

xi ≤ yi for all i. Sometimes we simply write z ≥ 1 when we mean that zi ≥ 1 for all i.

Definition 2.1.4 For each matrix A = (aij), the inequality A ≥ 0 means that aij ≥ 0

for all i and j.

Definition 2.1.5 A matrix A is called inverse-monotone if A−1 exists and A−1 ≥ 0.

Lemma 2.1.2 (Discrete comparison principle) Let A be inverse-monotone. Then

Av ≤ Aw implies that v ≤ w.

Proof. Multiply A(v − w) = b ≤ 0 by A−1 and use A−1 ≥ 0.

The class of M -matrices is an important subset of inverse-monotone matrices class.

Definition 2.1.6 A matrix A is an M-matrix if its entries aij satisfy aij ≤ 0 for i ̸= j

and its inverse A−1 exists with A−1 ≥ 0.

The diagonal entries of an M-matrix satisfy aij > 0.
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While the condition aij ≤ 0 is easy to check, it may be difficult to verify directly the

inequalityA−1 ≥ 0. Fortunately, several equivalent but more tractable characterizations

of M -matrices are known. The following result is frequently used in the context of

discretization methods.

Theorem 2.1.1 Let the matrix A satisfy aij ≤ 0 for i ̸= j. Then A is an M-matrix if

and only if there exists a vector e > 0 such that Ae > 0. Furthermore, we have

∥∥A−1
∥∥
∞,d

≤ ∥e∥∞,d

mink(Ae)k
. (2.9)

In Theorem 2.1.1 the vector e is called a majorizing element for the matrix A.

This theorem allows us to verify that the coefficient matrix of a given discretization is

an M -matrix while simultaneously estimating the stability constant from (2.9) provided

that we are able to find a majorizing element.

The following recipe for construction of this element is often successful:

• Find a function e > 0 such that Le(x) > 0 for x ∈ (0, 1), this is a majorizing

element for the differential operator L.

• Restrict e to a grid function eh.

In general, if the first step in this method is feasible then the method will work (at least

for sufficiently small h) provided the discretization is consistent to some positive order.

For homogeneous boundary conditions one usually eliminates the variables u0 and uN

before applying Theorem 2.1.1.

Example 2.1.1 Consider the special case where b(x) ≡ 0 in the differential operator

L of (2.1). Choose e(x) := x(1− x)/2. Then

Le(x) = 1 + c(x)e(x) ≥ 1.
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On setting e(x) := Rhe one obtains

Lheh ≥ (1, . . . , 1)T ,

since D+D− discretizes quadratic functions exactly at the interior grid points. Now

inequality (2.9) provides a stability constant of 1/8.

In the general case of (2.1), the construction of a majorizing element is slightly more

complicated. Define e(x) to be the solution of the boundary value problem

−w′′ + b(x)w′ = 1, w(0) = w(1) = 0.

Then e(x) > 0 for x ∈ (0, 1) and e(x) is bounded. The inequality c(x) ≥ 0 and the

consistency of the discretization imply that at the interior grid points one has

Lheh = RhLe+ (Lheh −RhLe) ≥ 1/2,

for all sufficiently small h, because RhLe = 1. This gives

Lemma 2.1.3 For all sufficiently small h, the central difference scheme for the bound-

ary value problem (2.1) is stable in the discrete maximum norm; moreover, the corre-

sponding coefficient matrix is then an M-matrix.

One can clearly combine Lemmas 2.1.1 (consistency) and 2.1.3 (stability) to obtain a

second-order convergence result.
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2.2 Upwind Schemes

We study now difference schemes for the SPBVP

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0. (2.10)

when turning points are excluded, i.e., when b(x) ̸= 0 for all x ∈ [0, 1]. We also assume

that c ≥ 0 on [0, 1] and that the functions b, c and f are smooth. Recall that for b > 0

there is an exponential boundary layer at x = 1, and for b < 0 the boundary layer is

at x = 0. The conditions ”b < 0” and ”b > 0” are equivalent: the change of variable

x 7→ 1− x transforms the problem from one formulation to the other.

Suppose that ε > 0 is small. If u exhibits a boundary layer, this adversely affects both

consistency and stability. If instead the boundary conditions are such that u has no

layer, then the consistency error improves but stability may still be a problem.

To begin, the central difference scheme is applied to the example

−εu′′ + u′ = 0 on (0, 1), u(0) = 0, u(1) = 1.

A transformation u(x) = x + v(x) would give homogeneous boundary conditions, but

one can use the scheme directly with inhomogeneous conditions. The discrete problem

is

−εD+D−ui +D0ui = 0, u0 = 0, uN = 1.

It is easy to solve this exactly:

ui =
ri − 1

rN − 1
, with r =

2ε+ h

2ε− h
.

If h ≫ 2ε, then r ≈ −1 so this computed solution oscillates badly and is not close to
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the true solution

u(x) =
e−(1−x)/ε − e−1/ε

1− e−1/ε
.

If we assume that h < 2ε, then the central difference scheme works, but from the

practical point of view this assumption is unsatisfactory when for instance ε = 10−5. A

fortiori, in two or three dimensions such a mesh restriction would lead to unacceptably

large numbers of mesh points, as for small ε the dimension of the algebraic system

generated would be too large for computer solution.

Returning to the general problem (2.10) write the central difference scheme in the form

of (2.5), viz.,

ri = − ε

h2
− 1

2h
bi, si = ci +

2ε

h2
, ti = − ε

h2
+

1

2h
bi. (2.11)

This gives an M -matrix and hence stability if we assume that

h ≤ h0(ε) =
2ε

∥b∥∞
,

which generalizes the observation of the example above. Note that h0(ε) → 0 if ε→ 0.

This conclusion is not confined to the central difference scheme: Classical numerical

methods on equidistant grids yield satisfactory numerical solutions for singularly per-

turbed boundary value problems only if one uses an unacceptably large number of grid

points. In this sense, classical methods fail.

An alternative heuristic explanation for the failure of central differencing in the above

example is that when ε ≪ h the scheme is essentially D0ui = 0, which implies in

particular that uN−2 ≈ uN = 1, so uN−2 is a poor approximation to u (xN−2) ≈ 0.

This argument also shows that we would do well to avoid any difference approxima-

tion of u′ (xN1) that uses uN . The simplest candidate meeting this requirement is the

25



Chapter 2. Finite Difference Methods

approximation

u′ (xi) ≈
ui − ui−1

h
. (2.12)

An inspection of the signs of the matrix entries of the earlier discrete problem, with

the aim of modifying the difference scheme in order to generate an M -matrix, also

motivates (2.12).

Thus for the general case where the sign of b may be positive or negative, consider the

scheme

−εD+D−ui + biD
ℵui + ciui = fi for i = 1, . . . , N − 1, (2.13a)

u0 = uN = 0, (2.13b)

with

Dℵ =

 D+ if b < 0,

D− if b > 0.
(2.12c)

This is the simple upwind scheme. (We saw in the Introduction that convection dom-

inates the problem and assigns a direction to the flow; upwind means that the finite

difference approximation of the convection term is taken on the upstream side of each

mesh point).

We now begin our analysis of the upwind scheme. Write Lh for the matrix of the scheme

after eliminating u0 and uN . In the form (2.4), the coefficients of the discrete problem

are
ri = − ε

h2
− 1

h
max {0, bi} , si = ci +

2ε

h2
+

1

h
|bi|

ti = − ε

h2
+

1

h
min {0, bi} .

Now the off-diagonal matrix entries are non-positive, irrespective of the relative sizes

of h and ε.
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Lemma 2.2.1 Assume that b(x) ̸= 0 for all x ∈ [0, 1]. Then the coefficient matrix

Lh for the upwind scheme (2.13) is an M-matrix and the upwind scheme is uniformly

stable with respect to the perturbation parameter:

∥uh∥∞,d ≤ C ∥Lhuh∥∞,d .

Proof. For definiteness assume that b(x) ≥ β > 0. We construct a suitable majorizing

vector. Choose e(x) := x, so Le(x) ≥ β. A direct computation yields Lheh ≥ β. By

Theorem 2.1.1 the matrix is an M -matrix and one gets the desired stability bound with

stability constant C = 1/β.

Theorem 2.2.1 Assume that b > β > 0 and c ≥ 0. Then there exists a positive

constant B∗, which depends only on β, such that the error of the simple upwind scheme

(2.13) at the inner grid points {xi : i = 1, . . . , N − 1} satisfies

|u (xi)− ui| ≤


Ch [1 + ε−1 exp (−β∗ (1− xi) /ε)] if h ≤ ε,

Ch+ C exp (−β∗ (1− xi+1) /ε) if h ≥ ε.

Proof. We estimate the consistency error using Taylor’s formula. At the grid point

xi, we obtain

|τi| := |Lhu (xi)− f (xi)| ≤ C

∫ xi+1

xi−1

(
ε
∣∣u(3)(t)∣∣+ ∣∣u(2)(t)∣∣) dt. (2.13)

The crude bound
∣∣u(k)∣∣ ≤ Cε−k combined with the stability result of Lemma 2.2.1 yields

only |u (xi)− ui| ≤ Ch/ε2, so a more precise bound on
∣∣u(k)∣∣ is needed. Invoking Lemma
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1.3.1 yields the inequality

|τi| ≤ Ch+ Cε−2

∫ xi+1

xi−1

exp(−β(1− t)/ε)dt

≤ Ch+ Cε−1 sinh
(
βh

ε

)
exp

(
−β (1− xi)

ε

)
.

Consider first the case when h ≤ ε. Then βh/ε is bounded. Now sinh t ≤ Ct, when t is

bounded, so

|τi| ≤ Ch

[
1 + ε−2 exp

(
−β (1− xi)

ε

)]
.

At first sight, this inequality seems unable to deliver the desired power of ε (viz., ε−1

instead of ε−2) when Lemma 2.1.3 is applied. But if one considers the boundary value

problem

−εw′′ + bw′ + cw = Cε−1 exp
(
−β(1− x)

ε

)
, w(0) = w(1) = 0,

then using the barrier function

w∗(x) = C exp
(
−β

∗(1− x)

ε

)
,

where β∗ > β, the comparison principle of Lemma 1.1.1 yields the estimate

|w(x)| ≤ C exp
(
−β

∗(1− x)

ε

)
,

where w has gained a power of ε compared with Lw ! The same calculation at the

discrete level, using the discrete comparison principle of Lemma 2.1.2, completes the

proof of the theorem when h ≤ ε.
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In the more difficult case h ≥ ε, we decompose the solution as

u(x) = −u0(1) exp
(
−b(1)(1− x)

ε

)
+ z(x).

By imitating the proof of Lemma 1.3.1 one finds that

∣∣z(i)(x)∣∣ ≤ C

[
1 + ε1−i exp

(
−b(1)(1− x)

ε

)]
.

Set

v(x) = −u0(1) exp
(
−b(1)(1− x)

ε

)
,

and define vh and zh by

Lhvh = Lv and Lhzh = Lz.

where vh and zh agree with v and z, respectively, at x0 and xN . Then

|u (xi)− ui| = |v (xi) + z (xi)− (vi + zi)| ≤ |v (xi)− vi|+ |z (xi)− zi| .

For the consistency error associated with z, similarly to before one gets

|τi(z)| ≤ Ch+ C sinh
(
βh

ε

)
exp

(
−β (1− xi)

ε

)
.

As now h ≥ ε, we use the inequality sinh t ≤ Cet. Hence

|τi(z)| ≤ Ch+ C exp
(
−β (1− xi+1)

ε

)
.
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The consistency error due to v must still be bounded. The definition of v gives

|Lv(x)| ≤ Cε−1|v(x)|.

Thus

|(Lhvh)i| = |Lv (xi)| ≤ Cε−1 exp
(
−β (1− xi)

ε

)
.

Appealing again to the discrete comparison principle, one obtains

|v (xi)− vi| ≤ |v (xi)|+ |vi| ≤ C exp
(
−β (1− xi)

ε

)
.

Combining the various estimates proves the result for the case h ≥ ε.

Theorem 2.2.1 shows that outside the boundary layer (i.e., in the interval [0, 1− δ]

for any fixed δ > 0) simple upwinding gives first-order convergence with a convergence

constant independent of ε. But inside the layer the theorem does not prove convergence,

and indeed the story here is disappointing: take the example

−εu′′ − u′ = 0, u(0) = 0, u(1) = 1,

which has a boundary layer at x = 0. Then the simple upwind scheme yields

ui =
1− ri

1− rN
, with r =

ε

ε+ h
.

Thus for h = ε one gets

u1 =
1/2

1− (1/2)N
but u (x1) =

1− e−1

1− e−1/ε
.

Several options are available for the construction of upwind schemes that achieve higher-

order convergence outside the layer. (Here ”upwind” means that the first-order deriva-
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tive in the differential equation is approximated by a non-centred difference approxi-

mation.)

First, taking b > 0 for convenience, the simple upwind scheme (2.13) can be rearranged

as

−
(
ε+

bih

2

)
D+D−ui + biD

0ui + ciui = fi, u0 = uN = 0. (2.14)

This resembles the central difference scheme, but the diffusion coefficient has been

modified from ε to ε+bih/2. That is, simple upwinding applied to (2.10) is the same as

central differencing applied to a modified version of (2.10). For ε > bih/2 the dominant

diffusion is O (ε), but in the more interesting case ε < bih/2 it becomes O (bih/2). The

scheme (2.14) is said to have artificial diffusion or artificial viscosity. It is the simplest

example of a general strategy: add artificial diffusion to the given differential equation

to stabilize a standard discretization method.

It turns out that too much artificial viscosity will ”smear” the computed solution (that

is, the computed layers are too wide).

Artificial diffusion can be introduced directly by means of a fitting factor δ, as in the

following fitted upwind scheme, which generalizes (2.14):

−εσ (q (xi))D+D−ui + biD
0ui + ciui = fi for i = 1, . . . , N − 1, (2.15a)

u0 = uN = 0, (2.15b)

with q(x) : =
b(x)h

2ε
. (2.15c)

If δ(q) = 1 + q, this becomes the simple upwind scheme (2.14).

Which choices of δ will generate good upwind schemes? As part of the answer to this

question, we generalize Lemma 2.2.1 to the following stability result.

Lemma 2.2.2 Assume that b(x) > β > 0, c ≥ 0, and δ(q) > q. Then the coefficient
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matrix of the fitted upwind scheme (2.15) is an M-matrix and the method is stable in

the discrete maximum norm, uniformly in ε.

Proof. See [9].

2.3 Matlab Implementaion

In order to validate the theoretical results, in this section we propose MATLAB codes

to solve the linear two-point boundary value problem (2.10) without turning points for

two different schemes. The codes are based on the schemes (2.11) and (2.13).

The main code of central difference scheme

1 Ia=0;Ib=1;n = 100 ; h = 1/n ; xh = Ia : h: Ib ;

2 eps=0.001;%epsilon value

3 %eps=eps+h.*b(xh(2:end -1))./2

4 f= @(x)-1;%f(x)

5 b=@(x)1;%b(x)

6 c=@(x)0;%c(x)

7 ybegin=0;yend=0;

8 A1 = diag(ones(n - 2, 1) ,1)*(-1) ;

9 A2 = diag(ones(n - 2, 1) ,-1)*(-1) ;

10 A3 = diag(ones(n-1, 1))*(2) ;

11 Ah1 = eps*(A1 + A2 + A3);

12 idA2=diag(zeros(n-1,1));

13 sdA2=diag(b(xh(2:end -2)).*ones(n-2,1) ',1);

14 ddA2=diag(-b(xh(3:end -1)).*ones(n-2,1) ',-1);

15 Ah2=(h./2)*(idA2+sdA2+ddA2);
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16 idA3=diag(c(xh(2:end -1)).*ones(n-1,1)');

17 Ah3=h^2*(idA3);

18 A = Ah1 + Ah2+ Ah3 ;

19 fx=f(xh(2:end -1)).*ones(n-1,1)';

20 fh=h^2*fx+[(eps+b(xh(1))*h/2)*ybegin zeros(1,n-3) (eps-b(xh(

end))*h/2)*yend];

21 yh=inv(A)*fh';

22 yhh=[ybegin , yh',yend];

23 %%%%%%%%%%%%%%%%%%%%

24 syms y(x)

25 ode = -eps*diff(y,x,2)+b.*diff(y,x)+c.*y == f;

26 cond1 = y(0) ==ybegin;

27 cond2 = y(1) == yend;

28 conds = [cond1 cond2];

29 ySol(x) = dsolve(ode,conds);

30 x = 0:h:1;

31 y = ySol(x);

32 u = zeros(1, n+1);

33 for i=1:n+1,

34 u(i)= ySol(x(i));

35 end

36 r=abs(yhh-u);

37 errm=max(r)

38 plot(xh,yhh,'-',x,u,x,r)

39 xlabel('x')

40 legend('Numerical solution','Exact Solution','Error')
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41 figure;

42 plot(x,r)

43 ylabel('Error')

44 xlabel('x')

45 ylim auto

The main code of upwind scheme

1 Ia=0;Ib=1;n = 100 ; h = 1/n ; xh = Ia : h: Ib ;

2 eps=0.001;%epsilon value

3 f= @(x)-1;%f(x)

4 b=@(x)1;%b(x)

5 c=@(x)0;%c(x)

6 ybegin=0;yend=0;

7 A1 = diag(ones(n - 2, 1) ,1)*(-1);

8 A2 = diag(ones(n - 2, 1) ,-1)*(-1);

9 A3 = diag(ones(n-1, 1))*(2);

10 Ah1 = eps*(A1 + A2 + A3);

11 idA2=diag(abs(b(xh(2:end -1))).*ones(n-1,1)');

12 ddA2=diag(-max(b(xh(3:end -1)),0).*ones(n-2,1) ',-1);

13 sdA2=diag(min(0,b(xh(2:end -2))).*ones(n-2,1) ',1);

14 Ah2=(h).*(idA2+ddA2+sdA2);

15 idA3=diag(c(xh(2:end -1)).*ones(n-1,1)');

16 Ah3=h^2*(idA3);

17 A = Ah1 + Ah2 + Ah3;

18 fx=f(xh(2:end -1)).*ones(n-1,1)';
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19 fh=h^2*fx+[(eps+max(0,b(xh(1)))*h)*ybegin zeros(1,n-3) (eps-

min(0,b(xh(end)))).*yend];

20 yh=inv(A)*fh'

21 yhh=[ybegin , yh',yend];

22 %%%%%%%%%%%%%%%%%%%%

23 syms y(x)

24 ode =- eps.*diff(y,x,2)+b.*diff(y,x)+c.*y == f;

25 cond1 = y(0) == ybegin;

26 cond2 = y(1) == yend;

27 conds = [cond1 cond2];

28 ySol(x) = dsolve(ode,conds);

29 x = 0:h:1;

30 y = ySol(x);

31 u = zeros(1, n+1);

32 for i=1:n+1,

33 u(i)= ySol(x(i));

34 end

35 r=abs(yhh-u);

36 errm=max(r)

37 plot(xh,yhh,'-',x,u,x,r)

38 xlabel('x')

39 legend('Numerical solution','Exact Solution','Error')

40 figure;

41 plot(x,r)

42 ylabel('Error')

43 xlabel('x')
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44 ylim auto

Example 2.3.1 Let us consider the same SPBVP discussed in Section (2.2),i.e.,

−εu′′ + u′ = 0 on (0, 1), u(0) = 0, u(1) = 1,

a transformation u(x) = x + v(x) would give homogeneous boundary conditions, then

applying the code of central difference scheme for ε = 10−2 and n = 103 we get
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Figure 2.1: Numerical solution of Example 2.3.1 using central difference scheme for ε =

10−2 and n = 103.
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Figure 2.2: Error on the computed solution of Example 2.3.1 using central difference

scheme for ε = 10−2 and n = 103.

We find that the central difference scheme works with 3.069×10−4 as a maximum error

(See Figure 2.2), but in the case h > 2ε the method fails, we can validate the result by

taking h = 10−2 and ε = 10−3 (See Figure 2.3).

On the other hand, the numerical behaviour of the upwind scheme is much better than

the central one in the case h > 2ε, it suffices to apply the code by taking h = 10−2 and

ε = 10−3 to get more satisfactory results (See Figure 2.4).

37



Chapter 2. Finite Difference Methods

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

x

 

 

Numerical solution
Exact Solution
Error

Figure 2.3: Comparing the numerical solutions with the exact solution of Example 2.3.1

using central difference scheme for ε = 10−3 and n = 102 and showing error.
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Figure 2.4: Comparing the numerical solutions with the exact solution of Example 2.3.1

using upwind scheme for ε = 10−3 and n = 102 and showing error.
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Example 2.3.2 Consider the following singular perturbation problem (SPP)

εu′′(x) + u′(x)− u(x) = 0, u(0) = 1, u(1) = 1. (2.16)

The exact solution is given by

u(x) =
1

ep2 − ep1 [(e
p2 − 1) ep1x + (1− ep1) ep2x] ,

where

p1 =
−1 +

√
1 + 4ε

2ε
, p2 =

−1−
√
1 + 4ε

2ε
.

A transformation u(x) = 1 + v(x) would give homogeneous boundary conditions, then

applying the code of upwind scheme for ε = 10−2 and n = 200 we get 4.82× 10−2 as a

maximum error (See Figure 2.5).
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Figure 2.5: Comparing the numerical solutions with the exact solution of Example 2.3.1

using upwind scheme for ε = 10−2 and n = 200 and showing error.
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The Collocation Method

In this chapter we will present the energetic Robin boundary functions method

for solving the singularly perturbed ordinary differential equations (ODE) under the

Robin boundary conditions.

3.1 Introduction and Homogenization

Let the following second order boundary value problem under the Robin type boundary

conditions

εu′′(x) + p(x)u′(x) + q(x)u(x) = H(x), 0 < x < 1, (3.1a)

a1u(0) + b1u
′(0) = c1, a2u(1) + b2u

′(1) = c2. (3.1b)

where a1 , b1 satisfy a21+b21 > 0, and a2 , b2 satisfy a22+b22 > 0, c1 , c2 are given constants,

and [0, 1] is an interval of our problem. We suppose that p(x), q(x) and H(x) ∈ C[0, 1]

However, in many applications the independent variable t may be in an interval [a, b],

of which after taking the variable transform x = (t− a)/(b− a) we have the problem in

the interval x ∈ [0, 1], again, and the ODE and the Robin boundary conditions should
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be adjusted accordingly. When ε = 1 we have the usual ODE, while for 0 < ε << 1 we

have a singularly perturbed ODE.

In the construction of the energy method, the first step is the homogenization technique,

such that for the new variable

y(x) = u(x)−B0(x), (3.2)

the Robin boundary conditions are homogeneous. If c21 + c22 = 0 we can skip the
following processes and go to the next section directly.

We divide the derivations of the homogenization function B0(x) into two parts.

Part One. if a1 = 0, hence b1 ̸= 0, then we can derive

B0(x) = a0x+ b0x
ν , ν ⩾ 2, (3.3a)

a0 =
c1
b1
, (3.3b)

b0 =
b1c2 − a2c1 − b2c1
b1a2 + b1b2ν

. (3.3c)

There are many values of ν such that a2 + b2ν ̸= 0 (hence, b1a2 + b1b2ν ̸= 0) and one

can choose it easily.

Part Two. if a1 ̸= 0, we can derive

B0(x) = a0 + b0x
ν , ν ⩾ 2, (3.4a)

a0 =
c1
a1
, (3.4b)

b0 =
a1c2 − a2c1
a1a2 + a1b2ν

. (3.4c)

There are many values of ν such that a2 + b2ν ̸= 0 (hence, a1a2 + a1b2ν ̸= 0 ) and one

can choose it easily.
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The above function B0(x) includes a parameter ν. Let

B0(x) = a0 + b0x, (3.5)

and through some derivations we can obtain

a0 =
c1b2 + c1a2 − c2b1
a1b2 + a1a2 − a2b1

, (3.6a)

b0 =
a1c2 − a2c1

a1b2 + a1a2 − a2b1
. (3.6b)

In the case with a1b2 + a1a2 − a2b1 = 0, we must employ the above (3.3) and (3.4) to

set up the function B0(x).

Through the variable transformation (3.2), we obtain a new BVP with the homogeneous

Robin boundary conditions

εy′′(x) + p(x)y′(x) + q(x)y(x) = F (x), 0 < x < 1, (3.7a)

a1y(0) + b1y
′(0) = 0, a2y(1) + b2y

′(1) = 0. (3.7b)

Such that

F (x) = H(x)− εB′′
0 (x)−B′

0(x)p(x)−B0(x)q(x).

3.2 Energetic Robin Boundary Functions Method

By multiplying both sides of (3.7a) by y(x), integrating it from x = 0 to x = 1, one

can derive

∫ 1

0

[
εy′′(x)y(x) + p(x)y′(x)y(x) + q(x)y2(x)

]
dx =

∫ 1

0

F (x)y(x)dx. (3.8)
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If there exists an exact solution y(x) of (3.7a) and (3.8), it must satisfy the above equa-

tion. The resulting equation is an energy equation and we will use it as a mathematical

tool to solve y(x).

The next step is searching the Robin boundary functions which automatically satisfy

(3.8). In terms of polynomials we can derive

Bj(x) = 1− a1
b1
x+

a1b2 + a1a2 − a2b1
b1a2 + (j + 1)b1b2

xj+1, j ⩾ 1 if b1 ̸= 0, (3.9a)

Bj(x) = x− a2 + b2
a2 + (j + 1)b2

xj+1, j ⩾ 1 if b1 = 0. (3.9b)

For the homogeneous Robin boundary conditions in (3.8) we may encounter the case

that there exists a positive integer j0 such that a2 + (j0 + 1) b2 = 0, for example, when

a2 = 4, b2 = −1, j0 = 3. With this situation we can skip this j0 in (3.9a) and (3.9b)

and they are modified to

Bj(x) = 1− a1
b1
x+

a1b2 + a1a2 − a2b1
b1a2 + (j + 1)b1b2

xj+1, j ⩾ 1, j ̸= j0, if b1 ̸= 0, (3.10a)

Bj(x) = x− a2 + b2
a2 + (j + 1)b2

xj+1, j ⩾ 1, j ̸= j0, if b1 = 0. (3.10b)

They are at least second-order polynomial functions which satisfy the following homo-

geneous Robin boundary conditions

a1Bj(0) + b1B
′
j(0) = 0, a2Bj(1) + b2B

′
j(1) = 0, j ⩾ 1. (3.11)

For a BVP if the boundary conditions make the coefficient preceding xj+1 be zero, then

(3.9a) and (3.9b) are not applicable. For this case we can enrich the boundary functions

by including other type functions.

From (3.9a) and (3.11) it is obvious that when Bj(x) is a Robin boundary function,

βBj(x), β ∈ R is also a Robin boundary function, and when Bj(x) and Bk(x) are Robin

43



Chapter 3. The Collocation Method

boundary functions, Bj(x) + Bk(x) is also a Robin boundary function. The Robin

boundary functions are closed under scalar multiplication and addition. Therefore, the

set of

{Bj(x)} , j ⩾ 1, (3.12)

and the zero element constitute a linear space of the Robin boundary functions, denoted

by B.

Let us now state the following result.

Theorem 3.2.1 In the linear space B there exist Robin boundary functions

Ej(x) = γjBj(x), j ⩾ 1, j not summed. (3.13)

Where

e2 =

∫ 1

0

[
εB′′

j (x)Bj(x) + p(x)B′
j(x)Bj(x) + q(x)B2

j (x)
]

dx, (3.14a)

e1 =

∫ 1

0

Bj(x)F (x)dx, (3.14b)

γj =
e1
e2
, (3.14c)

are such that Ej(x) satisfies the following energy integral equation

∫ 1

0

[
εE ′′

j (x)Ej(x) + p(x)E ′
j(x)Ej(x) + q(x)E2

j (x)
]

dx =

∫ 1

0

F (x)Ej(x)dx. (3.15)

Proof. See [11].

The Robin boundary function Ej(x) in (3.13) endowed with the multiplier γj in (3.14c)

not only satisfies the homogeneous Robin boundary conditions but also preserves the

energy in (3.15). The multiplier γj is determined by using the energy identity (3.15).

Hence, Ej(x) is an energetic Robin boundary function, and correspondingly the numeri-
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cal method based on Ej(x) is an energetic Robin boundary functions method (ERBFM).

3.2.1 Deriving the linear system by collocation method

The numerical procedure for solving y(x) is given in the following form: to find the

expansion coefficients cj in

y(x) =
n∑

j=1

cjsjEj(x),

[
u(x) = B0(x) +

n∑
j=1

cjsjEj(x)

]
, (3.16)

where Ej(x) acts as the basis in the numerical solution of y(x). It can be seen that

y(x) in (3.16) automatically satisfies (3.7b).

Because the boundary conditions are automatically satisfied by (3.16), we only need to

guarantee that the governing equation (3.7a) is satisfied. First we set sj = 1. Inside

the interval (0, 1) we can collocate nq points xi = i/(nq + 1), i = 1, . . . , nq, to satisfy

(3.7a) by inserting (3.16) for y(x), so that we have a linear system

Ac = F, (3.17)

which can be used to determine the expansion coefficients c := cj, whose number is n.

In the above, the components of A and F are given, respectively, by

aij = εE ′′
j (xi) + p (xi)E

′
j (xi) + q (xi)Ej (xi) ,

and

Fi = F (xi).

The dimension of A is nq × n, and (3.17) is an over-determined system with nq > n.

In general, the norms of the columns of the coefficient matrix A are not equal. If one
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asks the norms of the columns of the coefficient matrix of A to be equal, the multiple-

scale sj is determined by (3.8)

sj =
R0

∥aj∥
, (3.18)

where aj denotes the jth column of A in (3.17) and R0 is a parameter. Hence, we have

||aj|| = R0, j = 1, . . . , n.

3.2.2 Normalized exponential trial functions

In the strong-form formulation of differential equations it is known that the selection

of trial functions is very important, for which we suppose that the set of trial functions

is complete, linearly independent, and satisfying the boundary conditions exactly. In

general, the used polynomial basis is hard to match the singularity behaviour for the

SPBVP. We will see a different set of trial functions which are used in [11] to treat the

second-order singularly perturbed problems

φj(x) =
ejx − 1

ej − 1
, φj(0) = 0, φj(1) = 1, (3.19a)

φ0(x) = x, φ0(0) = 0, φ0(1) = 1. (3.19b)

To avoid the divergence of ejx, we have introduced a normalized factor ej − 1 in the

denominator. Therefore, φj(x) is a normalized exponential trial function. In order to

let φj(x) satisfy the homogeneous Robin boundary conditions we can derive

Bj(x) = 1− x2

a2 + 2b2

[
a2 −

a1a2 (ej − 1)

jb1
− a1b2ej

b1

]
− a1 (ej − 1)

jb1
φj(x),

j ∈ Z if b1 ̸= 0,

(3.20)

Bj(x) = x2 − (a2 + 2b2) (ej − 1)

a2 (ej − 1) + jb2ej
φj(x), j ∈ Z if b1 = 0. (3.21)
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The special case B0(x) can be obtained by applying the L’Hospital rule to the above

equations.

Then, by applying Theorem 3.2.1 to the above Bj(x), we can derive the trial functions

Ej = γjBj(x). We suppose that the solution y(x) can be expanded by

y(x) =

m2∑
j=−m1

ajsjEj(x),

[
u(x) = B0(x) +

m2∑
j=−m1

ajsjEj(x)

]
, (3.22)

where n = m1 +m2 + 1 and the unknown coefficients aj have to be determined.

3.3 Numerical Examples

In order to assess the performance of the newly developed ERBFM, We investigate the

following examples of Lui and li [4].

Example 3.3.1 We solve the Example 2.3.2, i.e.,

εu′′(x) + u′(x)− u(x) = 0, u(0) = 1, u(1) = 1. (3.23)

The exact solution is given by

u(x) =
1

ep2 − ep1 [(e
p2 − 1) ep1x + (1− ep1) ep2x] ,

where

p1 =
−1 +

√
1 + 4ε

2ε
, p2 =

−1−
√
1 + 4ε

2ε
.

We expand the solution u(x) by (3.22). Under the parameters ε = 0.01, m1 = 100,

m2 = 1, nq = 200, and R0 = 0.1, we can find that the solution u(x) is very close to the

exact one with the maximum error being 8.09×10−8 as shown in Figure 3.1. Obviously,

the maximum error is much smaller than that calculated by the FDM using the upwind
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scheme in the Example 2.3.2 for the same parameters and even though for a smaller

stepsize.

The method gives also much better results than calculated ones by Varner and Choud-

hury [12], and by Reddy and Chakravarthy [7], who used h = 0.001 as a stepsize.

by using different methods, and has a closed-form solution:

(41) u(x) =
1

ep2 − ep1

[(ep2 − 1)ep1x + (1− ep1)ep2x],

where

(42) p1 =
−1 +

√
1 + 4ε

2ε
, p2 =

−1−
√
1 + 4ε

2ε
.

We expand the solution u(x) by (36). Under the parameters ε = 0.01, m1 = 100,

m2 = 1, nq = 200, and R0 = 0.1, we can find that the solution u(x) is very close

to the exact one with the maximum error being 8.09× 10−8 as shown in Fig. 2(a).

Obviously, our maximum error is much smaller than that calculated by Varner and

Choudhury [21], and by Reddy and Chakravarthy [20], who used a smaller stepsize

h = 0.001.
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Figure 2. For (a) Example 2 and (b) Example 3, comparing the numerical solutions obtained
by the ERBFM with the exact solutions and showing the errors.

688

Figure 3.1: Comparing the numerical solutions of Example 3.3.1 obtained by the

ERBFM with the exact solutions and showing the errors.

Example 3.3.2 We revisit Example 3.3.1 again, let us consider the Robin type bound-

ary conditions

εu′′(x) + u′(x)− u(x) = 0,

u(0) + u′(0) = 1 +
1

ep2 − ep1 [p1 (e
p2 − 1) + p2 (1− ep1)] , u(1) = 1,

where p1 and p2 were defined in the previous example.

Under the parameters ε = 0.01, m1 = 100, m2 = 1, nq = 300, ν = 2, and R0 = 1, we

can find that 5.53×10−7 as a maximum error (See Figure 3.2), The accuracy is slightly

worse than that in Example 3.3.1.
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by using different methods, and has a closed-form solution:

(41) u(x) =
1

ep2 − ep1

[(ep2 − 1)ep1x + (1− ep1)ep2x],

where

(42) p1 =
−1 +

√
1 + 4ε

2ε
, p2 =

−1−
√
1 + 4ε

2ε
.

We expand the solution u(x) by (36). Under the parameters ε = 0.01, m1 = 100,

m2 = 1, nq = 200, and R0 = 0.1, we can find that the solution u(x) is very close

to the exact one with the maximum error being 8.09× 10−8 as shown in Fig. 2(a).

Obviously, our maximum error is much smaller than that calculated by Varner and

Choudhury [21], and by Reddy and Chakravarthy [20], who used a smaller stepsize

h = 0.001.
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Figure 2. For (a) Example 2 and (b) Example 3, comparing the numerical solutions obtained
by the ERBFM with the exact solutions and showing the errors.
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Figure 3.2: Comparing the numerical solutions of Example 3.3.2 obtained by the

ERBFM with the exact solutions and showing the errors.
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Conclusion

In this present work, we introduced two numerical methods to solve the singularly

perturbed BVP, we saw that the collocation method based on energitic Robin boundary

conditions is highly accurate and stable than the finite difference methods with classical

and upwind schemes.
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Abstract
This work aims to study some numerical methods for the singularly perturbed boundary

value problems, the method of finite difference has been applied with upwind schemes

to reduce errors and Matlab implementation was established, we also apply the collo-

cation method based on energitic Robin boundary functions with giving a numerical

comparison on the same example between the used methods.

Key words. Singular perturbations, boundary layer, finite differences, collocation

method.

ملخص
غير الاضطرابات ذات الحدية المسائل لحل العددية الطرق بعض دراسة إلى العمل هذا يهدف
الخطأ تحسين أجل من معدّلة عددية بمخطّطات المنتهية الفروق يقة طر تطبيق ّ تم وقد المنتظمة،
الحدية الطاقة توابع على تعتمد التي التجميع يقة طر تطبيق ّ تم كما الماتلاب، في برمجتها مع الناتج

المثال. نفس على يقتين الطر بين عددية مقارنة إجراء مع لروبين
يقة طر المنتهية، الفروق الحدودية، الطبقة المنتظمة، غير الاضطرابات المفتاحية. الكلمات

التجميع.
Résumé
Ce travail vise à étudier quelques méthodes numériques pour les problèmes aux limites

singulièrement perturbés, la méthode de la différence finie a été appliquée avec des

schémas décentré amont pour réduire les erreurs et l’implémentation sous Matlab a

été établie, Nous avons également appliqué la méthode de collocation basée sur les

fonctions énergitiques aux limites de Robin avec une comparaison numérique entre les

deux méthodes sur le même exemple.

Mots clés. Perturbations singulières, couche limite, différences finies, méthode de

collocation.
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