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Abstract

The study of delay differential equations (DDEs) aims to understand the

behavior of systems where the current state depends not only on present

conditions but also on past states. The main objective of this work is to discuss the

existence and uniqueness of solutions and give an analytic method to solve DDEs.

Furthermore, we aim to study the stability of both linear and nonlinear equations to

determine the conditions under which the system remains stable. The analysis will

include examining equilibrium points and characteristic equations.
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Introduction

In nature, many changes take time to complete and do not happen immediately.For example, in biology, many processes do not occur immediately, such as hu-

man birth. The birth rate depends on available resources at some point. These cases

cannot be used using the ordinary differential equation (ODE). So delay differential

equations (DDE) were introduced to create more realistic models, and since then

many processes have relied on past history.

Delay differential equations have a rich history and have found numerous applica-

tions in various fields The development of numerical methods for solving (DDEs) has

made it possible to simulate and analyze complex systems that exhibit time delays

(DDEs) continue to be an active area of research, with new applications and theor-

etical results being discovered all the time. During the 1908 International Congress

of Mathematicians, Picard underscored the importance of incorporating hereditary

effects into models of physical systems. Volterra’s 1931 book laid the groundwork

for understanding how hereditary effects influence species interaction models. DDEs

gained momentum post-1940, driven by engineering and control challenges. Signi-

ficant activity in the 1950s, highlighted by Myshkis (1951) and Krasovskii (1959),

furthered DDE research. By the 1960s, Bellman and Cooke (1963) and Halanay

(1966) provided comprehensive insights into the subject, marking a clear progression

up to the early 1960s. Differential Delayed Equations (DDEs) is a type of differential

equation where the derivative of the unknown function is given at a given time by
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Introduction

indication of the values of the function at previous times. (DDEs) is also called time

delay systems, systems with subsequent effect, genetic systems or differential equa-

tions. It belongs to the category of functional status systems, and (DDEs) has been

widely taken in modeling physical and biological phenomena that show time delays

in their dynamics. For example, (DDEs) is widely used to model the dynamics of

time delay groups in their spread, the spread of infectious diseases with incubation

periods, and the synchronization of oscillations associated with late interactions.

The dynamical behavior of differential equation systems with delay will be considered

in this dissertation. Our work is divided into two chapters. We start with some res-

ults on DDEs, and the second chapter presents their stability analysis. The content

of each chapter is outlined as follows:

In the first chapter we present a few fundamental ideas and essential findings, includ-

ing the definition of differential equation systems with delay, existence and unique-

ness of solutions, analytical solution via the method of steps and the use of several

instances.

In the second chapter we explore the stability of the equilibrium points in both linear

and non-linear case, and we conclude this chapter by the study of two systems in

dimensions 1 and 2, using numerical simulations.[6], [12]
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Chapter 1

General results on delay

differential equations

This chapter includes some basic concepts and some necessary results, such

as defining systems of differential equations with delay, the existence and

uniqueness of solution, and the analytical solution by giving some illustrative ex-

amples.

Definition 1.1 [5] A delay differential equation (DDEs) is a class of differential

equations that involve delays or memory effects in their formulations in which the

derivative of the solution depends on the state at the present time t. and on the state

at earlier times.

We will be working with (DDEs) of the form :

x′(t) = f(t, x(t), x(t− τ)) t ≥ t0, x ∈ Rn, (1.1)

where τ > 0 is the delay term.

DDEs have also been used in a wide variety of flelds, such as physics, chemistry,

biology, economy and neuroscience, to model various phenomena that exhibit time
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Chapter 1. General results on DDEs

delays in their dynamics. There are different kinds of differential equations delay in

which the delay is in different forms :

Definition 1.2 (Types of DDEs) [5] :

1. We call delay differential equation with discrete delays (or constant delays), if

the delay τ is a positive real number, or a brunch of delays

x′ (t) = f (t, x (t) , x (t− τ1) , ..., x (t− τm)) t ≥ t0, x ∈ Rn,

with all τj (j = 1, ...,m) being positive real numbers and f : R×Rn(m+1) → Rn

is a nonlinear smooth function.

2. We call delay differential equation with time-dependent delays, if τ depends on

time τ = τ(t), where delay τ(t) > 0 is a given function.

3. We call delay differential equation with state dependent delays, if τ depends on

x(t); τ = τ(t, x(t)), where delay τ(t, x(t)) > 0 depends on solution.

There are other types of DDEs (such DDEs with distributed delays, DDEs of neutral

type, etc...).

Example 1.1 (Mackey-Glass equation) A model of circulating white blood cell

numbers

x′ (t) = −γx (t) + β
x (t− τ)

1 + x (t− τ)n , x (t) ∈ R.

Example 1.2 (Pantograph equation) Originates from modelling pantographs

x′ (t) = ax (t) + bx (kt) , x (t) ∈ Rn,

where a, b and k are parameters with k ∈ ]0, 1[.
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Chapter 1. General results on DDEs

Example 1.3 (Sawtooth equation) A model problem introduced by Mallet-Paret

and Nussbaum

εx′ (t) = −γx (t)− kx (t− a− cx (t)) , x (t) ∈ R,

with ε, a, c > 0 and γ + k > 0. This model gets its name from stable period solutions

seen in ε→ 0 limit.

In this work we will focus on the first case, which is the differential equation with

one delay.

1.1 Existence and uniqueness of an initial value

problem (IVP) of a DDE

Example 1.4 (Delayed malthusian) [6] The familiar Malthusian Model describ-

ing the growth of a single population is given by

dx

dt
= rx (t) , (1.2)

where r > 0 is the growth rate. This model predicts exponential growth or exponen-

tial decline. To account for the influence of the past on the present population, we

consider the following DDE:
dx

dt
= rx (t− τ) . (1.3)

1. The term rx (t− τ) represents the population growth rat at time t, which de-

pends on the population size x (t− τ) at a previous time t− τ.

2. Here τ is the delay and it accounts for the time it takes for changes in resource

availability to affect population growth.
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Chapter 1. General results on DDEs

By integrating (1.3), we obtain the following integral equation :

x (t) = x (t0) +

∫ t

t0

rx (s− τ) ds

x(t) = x(t0) +

∫ t−τ

t0−τ
rx(s)ds. (1.4)

This integral representation suggests that knowing the value of x(t0) is not enough

to calculate the values of x (t) for t > t0, also we must know the values x(t) for

t ∈ [t0 − τ, t0].

Therefore the kind of initial conditions that should be used in DDEs differ from

ODEs so that one should specify in DDEs an initial function on some interval of

length τ , say [t0 − τ, t0] and then try to find the solution of equation (1.1) for all

t ≥ t0.

Definition 1.3 (History function) The history function in the delayed differen-

tial equations (1.1) represents the values of the function at previous points of time

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,

which provides the information required to calculate the derivative at the present

time. The history function determines the initial conditions of the delayed differential

equations.

Definition 1.4 (The initial value problem) The problem for finding a solution

of the delay differential equation (1.1) with single delay τ > 0

x′(t) = f(t, x(t), x(t− τ)) for t ≥ t0, (1.5)

6



Chapter 1. General results on DDEs

satisfiying the initial condition

x(t) = ϕ(t) for t ∈ J− = [t0 − τ, t0], (1.6)

is called the initial value problem.

Theorem 1.1 Let τ > 0 be a constant in J = [t0, t0 + a], where t0 ≥ 0, and

a > 0. Let’s consider the initial value problem (1.5), (1.6). Assume that f(t, x, y)

and fx(t, x, y), fy(t, x, y) are continuous on R × R2n and ϕ is a given continuous

function on R. Then the initial value problem (1.5), (1.6) has exactly one solution.

1.2 Solutions of delay differential equations

In this section, we introduce an elementary method that can be used to solve some

delay differential equations analytically. It is called the method of steps, which

converts the DDE on a given interval to an ODE over that interval, by using the

known history function for that interval.

1.2.1 Principle of method of steps:

The method of steps used to solve delayed differential equations, where the late

differential equation is converted into the ordinary differential equation within small

intervals of time and each interval the solution at present depends on the solution in

previous times.

[6] We will work with the differential equations of the continuous delay specified for

t > t0 and the history function on the interval [t0 − τ, t0] where τ is the delay.

- First, we will reduce the delayed differential equation (DDE) to the ordinary dif-

ferential equation (ODE)in the interval [t0 − τ, t0] .
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Chapter 1. General results on DDEs

- Then we find a right solution in this interval [t0 − τ, t0] and we will use it as a

initial function in this interval [t0 + τ, t0 + 2τ ].

- Then we find a solution in the interval [t0 + τ, t0 + 2τ ] and so we continue the same

way from the interval [t0 + τ, t0 + 2τ ] to the interval [t0 + 2τ, t0 + 3τ ]. Continuing

this way leads to a solution ODE valid on [t0 + (k − 1) τ, t0 + kτ ] for all k = 4, 5, ...

Following this procedure, a unique solution of the initial value problem can be de-

termined.

1.2.2 Examples

To understand the method of the above steps we will present the following models.

Example 1.5 (Delayed malthusian) [6]: For the system (1.3) with t0 = 0, we

assume that x (θ) = ϕ (θ) for θ ∈ [−τ, 0] .

For all t ∈ [0, τ ] , we integrate (1.3) on the interval [0, t] leading to

x(t) = x(0) +

∫ t−τ

−τ
rx(s)ds

x(t) = ϕ(0) +

∫ t−τ

−τ
rϕ(s)ds (1.7)

x(t) = x1(t).

We repeat the same step to find of x(t) on the intervals [τ, 2τ ] .

x(t) = x(τ) +

∫ t−τ

−τ
rx(s)ds

x(t) = x1(τ) +

∫ t−τ

0

rx1(s)ds

x(t) = x2(t).

8



Chapter 1. General results on DDEs

We repeat the same steps to obtain values of x(t) on the intervals [(k − 1) τ, kτ ] . we

get

xk(t) = xk−1((k − 1)τ) + r

∫ t−τ

(k−2)τ
xk−1 (s) ds, k = 3, 4, ...

For an illustration of the above process, we consider the following problem

 x′(t) = rx(t− τ), x (t) ∈ R, t ≥ 0.

x(θ) = 1, θ ∈ [−τ, 0].
(1.8)

The method of steps gives the following:

1. For t ∈ [0, τ ],

x1 (t) = ϕ (0) +

∫ t−τ

−τ
rϕ (s) ds = 1 + r

∫ t−τ

−τ
ds = 1 + rt.

2. For t ∈ [τ, 2τ ],

x2 (t) = x1 (τ) +

∫ t−τ

0

rx1 (s) ds

= 1 + rτ + r

∫ t−τ

0

(1 + rs)ds

= 1 + rt+ r2
(t− τ)2
2

.

3. xj(t) can be calculated in the same way on the intervals [(j − 1)τ, jτ ], for all

j = 3, ...

The solutions obtained using the method of steps above are plotted in Figure (1.1).

We observe that:

• When r = −1, the solution displays some damping oscillations.

• When r = −π
2
, the solution is periodic.
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Chapter 1. General results on DDEs

• When r = −0.5, no oscillations.

We can see that the magnitude of the oscillations decrease with the values of r.

Tim e
0 2 4 6 8 10 12 14 16 18 20

Po
pu

la
tio

n 
(x

)

­1.5

­1

­0.5

0

0.5

1

1.5
D elayed  Malth u sian  Mo d el

r = ­1
r = ­p i /2
r = ­0 .5

Figure 1.1: Exact solution of (1.8)for τ = 1using the method of steps.

Example 1.6 (The delayed logistic model) [6] The familiar logistic equation de-

scribing the growth of a single population is given by:

dx

dt
= rx(t)(1− x(t)

K
), (1.9)

where r, K and τ are positive constants.

An alternative variant of the logistics growth model is the delayed logistics model,

which adds a late factor to the population growth equation. According to this model,

the rate of population growth depends on both the current and previous population

sizes. Hutchinson suggested the following delayed logistic equation to account for the

regulatory influence of the population from a previous time t− τ .

dx

dt
= rx(t)(1− x(t− τ)

K
). (1.10)
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Chapter 1. General results on DDEs

It is important to note the following points:

• Despite its simple look, the delayed logistic model is more complex. For instance,

computing the solution for t > 0 requires the knowledge of x(t) for all t ∈

[−τ, 0].

• We cannot generally obtain explicit expressions for the solutions of this DDE.

• Fortunately, we can employ the method of steps to convert this equation into an

ODE.

• However, it is not always possible to construct explicit solutions for the resulting

ODE.

Using the method of steps on the logistics model:

1. Assume that x(θ) = ϕ(θ) for θ ∈ [−τ, 0].

2. For all t ∈ [0, τ ], we have

dx

dt
= rx(t)(1− x(t− τ)

K
) = rx(t)(1− ϕ(t− τ)

K
). (1.11)

3. We denote by x1(t) the solution of the above ODE on the interval [0, τ ].

4. We repeat this same step on the interval [τ, 2τ ] by solving

dx

dt
= rx(t)(1− x1(t− τ)

K
), (1.12)

leading to the solution x2(t).

It is important to note that using the method of steps for this DDE is quite demanding

in terms of algebraic manipulations. One can use matlab solver dde23 to solve the

logistic DDE numerically (see Figures ).
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Figure 1.2: The solutions of the Delay Logistic Model (1.10) for τ <
π
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Figure 1.3: The solutions of the Delay Logistic Model (1.10) for τ > π
2
.

It is worth Noting that, unlike its ODE version, the delayed logistic model exhibits

the following dynamics :

-The model oscillates around x = K for τ = 1.2.

-The model has a periodic solution for τ = 1.7.

1.3 Difference between ODEs and DDEs

ODE symbolizes the ordinary differential equation, while DDE symbolizes a delayed

differential equation. Both are kind of differential equations, but they differ in how

12



Chapter 1. General results on DDEs

systems behavior is modeled over time. Among these differences, we mention the

following:

1. In ordinary differential equations (ODEs), the rate of variability change is

determined by its current value and perhaps the values of other variables at

the same time point. The normal differential equation is used to model dynamic

systems where the system’s behavior depends on the current state.

In delayed differential equations(DDEs), the rate of variability depends on its

current value and also depends on the previous value with a time delay. These

equations are used to model systems in which the current situation depends

on previous cases and therefore the effect of time delay enters the dynamics of

the system.

Therefore ordinary differential equations have an instantaneous effect, and gen-

erate finite dimensional system, in the other hand delayed differential equations

haven’t an instantaneous effect, and generate infinite dimensional system.

2. IC’S (History function): If we want to solve the ordinary differential equa-

tion, we need the initial value problem (IVP) of the form:

x′(t) = f(t, x(t)), t ≥ t0,

and we need the initial conditions (IC’S) at initial time point x(t0) = x0.

If we want to solve the delayed differential equations, we need the initial value

problem (IVP) of the form

x′(t) = f(t, x(t), x(t− τ)), t ≥ t0,

13



Chapter 1. General results on DDEs

and we need the history function

∀t ∈ [t0 − τ, t0] , x(t) = ϕ(t).

3. Dynamical strutures: Differential equations for delays (DDEs) already show

a richer range of dynamic structures compared to ordinary differential equa-

tions (ODEs). One of the main reasons for this richness is the presence of

delays, which introduce memory effects into the dynamics of the system. These

memory effects can lead to a variety of complex behaviors such as oscillations

and even chaotic dynamics.

In ODEs bounded solutions of autonomous ODEs can only oscillates if there

are at least two components. Also chaotic solutions only if there are at least

three components.

In DDEs, oscillatory and even chaotic behaviours can occur in the scalar case.

4. Propagated discontinuities: In both differential delay equations (DDEs)

and Ordinary differential equations (ODEs), discontinuity can occur when

there is a difference between the left and right side boundaries of the solu-

tion function derivative at a given point. This can be expressed as follows:

lim
t→t−0

x0(t)
′ 6= lim

t→t+0
x0(t)

′.

There exists a jump derivative discontinuity at t0,where x0(t) is the solution

function. t0 is the point at which the discontinuity occurs. x0(t)′ represents the

derivative of the solution function with respect to time . This applies to both

ODEs and DDEs. However, in the case of DDEs, the existence of delays leads

to additional complications, and disruptions may arise due to the reliance of

the system’s status on previous values.

14



Chapter 2

Stabilty of delay differential

equations

The stability analysis of the equilibrium points in the linear and nonlinear

autonomous DDE is the focus of this second chapter. By using numerical

simulation, a study of two systems (with 1 and 2 dimension) concludes this chapter.

Throughout this chapter we shall consider the autonomous DDE with a single delay,

which is given by [4]

 x′(t) = f(x(t), x(t− τ)) t ≥ 0,

x(t) = ϕ(t) − τ ≤ t ≤ 0,
(2.1)

where τ > 0, f ∈ C1(E × E,Rn), E ⊆ Rn and ϕ ∈ C ([−τ, 0] ,Rn).

The solution of DDE (2.1) with initial data ϕ(t) is denoted by x(t, ϕ).

Our main interests is to analyze the stability equilibrium solutions of the equation

(2.1) in the linear and nonlinear cases. By using numerical simulation, a study of

two systems (with 1 and 2 dimension) concludes this chapter.
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Chapter 2. Stabilty of DDE.

2.1 Stability of equilibrium points

Definition 2.1 [8] All constant solution (steady state) x(t, ϕ) of (2.1), which satis-

fies, x (t, ϕ) = x∗ for any t ≥ −τ is called an equilibrium point.

Therefore, to obtain all the equilibria of a DDE, we only need to solve

f(x∗, x∗) = 0. (2.2)

That is if x∗ is an equilibrium point of (2.1), then x(t) = x∗, t ≥ −τ is solution of

(2.1) i. e. x′(t) =
dx∗

dt
= 0 we have

f(x∗, x∗) = 0. (2.3)

This equilibrium point of (2.1) are obtained by solving equation (2.3).

Notation 2.1 [2] Let C ([−τ, 0] ,Rn) the Banach space of continuous functions map-

ping the interval [−τ, 0] into Rn with the topology of uniform convergence. We des-

ignate the norm of an element ϕ ∈ C ([−τ, 0] ,Rn) by

‖ ϕ ‖τ= sup
−τ≤t≤0

‖ ϕ(t) ‖ .

Definition 2.2 :

1. An equilibrim point x∗ of (2.1) is stable if for any given ε > 0, ∃δ > 0 such

that ϕ ∈ C and

‖ ϕ− x∗ ‖τ< δ =⇒ ‖x(t, ϕ)− x∗‖ < ε, t ≥ 0,

i.e. Nearby starting solutions stay nearby.

16



Chapter 2. Stabilty of DDE.

2. x∗ is asymptotically stable if it is stable and ∃b > 0 such that ϕ ∈ C and

‖ ϕ− x∗ ‖τ< b =⇒ lim
t→∞

x(t, ϕ) = x∗.

3. Equilibrium point which is not stable is called unstable.

The stability conditions of equilibrim points can be complex because we need the

explicit solution of the given differential equations. It is more interesting and more

useful to consider methods for proving stability without actually solving the differ-

ential equations. In fact we want methods which will apply to cases when we cannot

(or would rather not) solve precisely.

As in the case of autonomous system of ODEs, characteristic equations are quite

useful to analyse local stability. Rather than being an algebraic equation, the char-

acteristic equation obtained from a DDE system is a transcendental equation, which

means that such equation have polynomial parts and include some terms in e−λτ .[14]

[10] [2]

2.2 A linear system of delay differential equations

Definition 2.3 A homogeneous linear autonomous system of delay differential equa-

tions with a single delay can be written as follows:

x′(t) = Ax(t) +Bx(t− τ), (2.4)

A is a constant coeffi cient matrix that determines the evolution of the system without

delay. B is a constant coeffi cient matrix representing the effect of delayed states.

To find the equilibrium points of the differential delayed equation(DDE), we need to

assign a derivative of a state variable equal to zero and the solution to the values of
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a state variable that meets this condition.

x′(t) = 0 =⇒ Ax(t) +Bx(t− τ) = 0.

Then we shall solve the equation

Ax∗ +Bx∗ = 0.

We see that x∗ = 0 is an equilibrium, and it is the only equilibrium if A + B is

non-singular.

By the theory of dynamical system, we know that all solutions of (2.4) are (asymp-

totically) stable if and only if x∗ = 0 is (asymptotically) stable.

Remember that in case of linear homogeneous system of n ordinary differential equa-

tions by fixed transactions, there are independent solutions in writing. We Know

that the general solution can be expressed as arbitrary a linear combination of these

solutions. but the situation is more complicated for Eq. (2.4) because, in general,

(2.4) has many infinitely linear independence (already valid on R).

2.2.1 Characteristic equation of linear delay differential equa-

tion

The characteristic equation for ODEs is a polynomial, and the number of roots, or

eigenvalues, to anticipate may be found using the fundamental theorem of algebra,

where as the characteristic equation for the linear DDE is transcendental, there is

no theory pertaining to the number of roots (which may be countably infinite), and

the study of the distinctive roots is more diffi cult.

In case of a scalar DDE (n = 1)

18
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Let’s consider the linear autonomous delayed differential equation with a single delay:

x′(t) = ax(t) + bx(t− τ), x ∈ R, τ > 0, (2.5)

where a and b are two real number

Same logic as what we do with ODEs, we seek exponential solutions of the form

x(t) = ceλt, where c 6= 0 and λ ∈ C.

We plug it into (2.5) and get

λeλtc = eλta+ eλ(t−τ)cb,

then we obtain

(λ− a− e−λτb)c = 0, (2.6)

(2.6) has non-zero solution if and only if

λ− a− e−λτb = 0. (2.7)

This equation is called transcendental characteristic equation of (2.5), and there are

infinite number of solutions to this equation for complex λ = α+ iβ, which all lie on

curve

β = ±
√
b2e−2τα − (x− a)2.

In case of a system of DDEs

Let’s look at the linear system of DDEs (2.4). To find the characteristic equation,

we assume a solution of the form x(t) = eλtv, where eλt represents the exponential

function and v ∈ C2 is a constant vector. (v 6= 0). When we apply this solution to

19



Chapter 2. Stabilty of DDE.

the system (2.4), we obtain:

λeλtv = eλtA+ veλ(t−τ)B,

then we obtain

(λI − A− e−λτB)v = 0, (2.8)

(2.8) has non-zero solution if and only if

D(λ) := det(λI − A− e−λτB) = 0. (2.9)

We call D(λ) the transcendental characteristic equation of (2.4), and its roots are

said to be characteristics or eigenvalues of (2.4). [10] [3] [11]

2.2.2 Stability of the linear delay differential equation

The stability theory show some important characteristics of the property of the

characteristic function as in the case of a system of ordinary differential equations.

Thus, in theory, we may obtain all the roots and examine each one to as certain

whether an equilibrium is stable.

The following theorems show some important properties of the characteristic equa-

tion.

Theorem 2.1 [10] (i) D(λ) is an entire function.

(ii) If λ is a characteristic root, so is λ.

(iii) Given ξ ∈ R, there are at most nitely many characteristic roots in

λ ∈ C : Reλ > ξ.
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(iv) If there are infinitely many distinct characteristic roots {λn} , then

Reλn → −∞, n→∞.

Theorem 2.2 [10] Suppose Reλ < µ for every characteristic root λ. Then there

exists k > 0, such that

| x(t, ϕ) |< keµt ‖ ϕ ‖, t ≥ 0, ϕ ∈ C, (2.10)

where x(t, ϕ) is the solution of (2.4) with initial condition x0 = ϕ. So the equilibrium

x = 0 of (2.4) is asymptotically stable if all the characteristic roots have negative

real parts. On the other hand, if there exists a root with positive real part, it is

unstable.

Theorem 2.3 [9] The following hold for the system (2.5) .

1. If a+ b > 0, then x = 0 is unstable.

2. If a+ b < 0 and b ≥ a, then x = 0 is asymptotically stable.

3. If a+b < 0 and b < a, then there exists τ ∗ > 0 such that x = 0 is asymptotically

stable for 0 < τ < τ ∗ and unstable for τ > τ ∗.

Remark 2.1 Transcendental equations often include an unlimited number of roots

in the plane of complexity. Since we are unable to identify every root, we will need

to employ a variety of techniques in order to determine the stability of equilibrium

points.
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2.3 Local stability of nonlinear system of delay

differential equations

[14] Consider a nonlinear autonomous system of DDEs with a single delay (2.1).

That system is equivalent to:



x′1(t) = f1(x1(t), ..., xn(t), x1(t− τ)..., xn(t− τ)),

. .

. .

. .

x′n(t) = fn(x1(t), ..., xn(t), x1(t− τ)..., xn(t− τ)),

where x = (x1, x2, ..., xn) ∈ Rn and f = (f1, ..., fn), τ > 0, f ∈ C1(E × E,Rn),

E ⊆ Rn.

That system has a unique solution maximally defined for all t > 0 satisfying the

inital condition x(t) = ϕ(t) ∈ C ([−τ, 0] ,Rn) .

2.3.1 Linearization of nonlinear DDE

Suppose x∗ = (x∗1, ..., x
∗
n) ∈ Rn is an equilibrium point of (2.1),i.e.,f(x∗1, ..., x

∗
n) = 0.

Define y(t) = x(t)− x∗, where x(t) be a solution of DDE, then y(t) satisfies

y′(t) = x′(t)− dx∗

dt
= x′(t)− 0

= f(x(t), x(t− τ)),

hunce

y′(t) = f(x∗ + y(t), x∗ + y(t− τ)). (2.11)

22



Chapter 2. Stabilty of DDE.

To study the stability of x∗, we need to investigate the behavior of solution of (2.1)

near x∗, i. e. the behavior of solution of (2.11) near y(t) = 0. For this purpose we

expand the right hand side as the first order Taylor’s approximation

y′(t) = f(x∗, x∗) +
∂f

∂x (t)

∣∣∣∣
x=x∗

y(t) +
∂f

∂x (t− τ)

∣∣∣∣
x=x∗

y(t− τ).

We obtain finaly the linearization of DDE at x∗ as follows.

y′(t) = Ay(t) +By(t− τ), (2.12)

where f(x∗, x∗) = 0 and

A =

(
∂fi
∂xj(t)

)
1≤i≤n
1≤j≤n

∣∣∣∣∣∣
(x∗,x∗)

=

(
∂f

∂x(t)

)
1≤i≤n
1≤j≤n

∣∣∣∣∣∣
(x∗,x∗)

,

and

B =

(
∂fi

∂xj(t− τ)

)
1≤i≤n
1≤j≤n

∣∣∣∣∣∣
(x∗,x∗)

=

(
∂f

∂x(t− τ)

)
1≤i≤n
1≤j≤n

∣∣∣∣∣∣
(x∗,x∗)

,

are n× n matrices evaluated at the equilibrium point.

Then the linear stability of x∗of system (2.1) is comparable to the zero answer found

in system (2.12) is stable similar to the ODE case. We seek the solution y(t) = eλtv,

v 6= 0, It simple to confirm that y(t) = eλtv, v 6= 0, is a solution of (2.12) if and only

λ a solution of the characteristic equation.

D(λ) := det(λI − A− e−λτB) = 0. (2.13)

Equation (2.13) has an infinite number of roots λ ∈ C which determine the stability

of steady state solution x∗. The following result reveals the relation of system (2.1)

and its linearized system (2.12). [10] [14] [8] [3]
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Theorem 2.4 (Local stability of nonliner autonomous DDEs) [10]: LetD(λ)

be the characteristic equation corresponding to (2.12), then x∗is locally asymptot-

ically stable if every root of D(λ) has negative real part. In fact, there exit δ > 0,

k > 0 such that

‖ ϕ− x∗ ‖< δ ⇒‖ xt(ϕ)− x∗ ‖≤ k ‖ ϕ− x∗ ‖ e−µt, t ≥ 0,

where

−µ := sup
D(λ)=0

Reλ < 0.

On the other hand, x∗ is unstable if one of the roots of D(λ) has positive real part.

Definition 2.4 (Classification of equilibrium points) : Let x∗ an equilibrium

point of system (2.1) and D(λ) be the characteristic equation corresponding to (2.12).

1. The equilibrium point x∗ is called a sink if all roots λ of D(λ) satisfy

Re(λ) < 0.

2. The equilibrium point x∗ is called a source if all roots λ of D(λ) satisfy

Re(λ) > 0.

3. The equilibrium point x∗ is called a saddle if at least one root of D(λ) has

negative real part and at least one has positive real part and no one has a zero

real.

Lemma 2.3.1 :

1. All sinks are asymptotically stable equilibrium points.
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2. All sources and saddles are unstable equilibrium points.

Example 2.1 [15] Consider the delay differential equation with τ = 1 given by

x′(t) = −x(t)− x2(t− 1).

1. To identify the equilibrium points : We have

f(x(t), x(t− τ)) = −x(t)− x2(t− 1),

then equilibrium points are the solution of

f(x∗, x∗) = −x∗ − x∗2 = −x∗(1 + x∗) = 0.

So the system has two equilibrium points x∗1 = 0 and x
∗
2 = −1.

2. Equilibrium points classification

For x∗1 = 0, we have,
(

∂f
∂x(t)

)∣∣∣
(0,0)

= −1, and
(

∂f
∂x(t−1)

)∣∣∣
(0,0)

= 0⇒ a = −1 and

b = 0. Then the linearized system is

y′(t) = −y(t), (2.14)

and the characteristic equation of (2.14) is given by

λ+ 1 = 0 =⇒ λ = −1.

Because Re (λ) < 0, the equilibrium points x∗1 = 0 is a sink, which is asymp-

totically stable.
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For x∗2 = −1, we have

(
∂f

∂x(t)

)∣∣∣∣
(−1,−1)

= −1, and
(

∂f

∂x(t− 1)

)∣∣∣∣
(−1,−1)

= 2⇒ a = −1 and b = 2.

Then the linearized system is

y′(t) = −y(t)− 2y(t− 1), (2.15)

and the characteristic equation of (2.15) is given by

λ+ 1− 2e−λ = 0.

There exist roots λ1 = 0, 3748 > 0 and λ2 = −0, 86+4, 74i. Because Re (λ1) >

0, the equilibrium points x∗2 = −1 is a saddle, which is unstable.

2.3.2 Delay effects on stability

[14] Among the methods used to study the stability is the geometric approach in the

case where the DDE system (2.1) has a characteristic equation at the equilibrium

point x∗ given by

P (λ) +Q(λ)e−λτ = 0, (2.16)

where P and Q are polynomial in λ.

As we know that the equilibrium x∗ is asymptotically stable if all the roots λ of the

equation (2.16) satisfy Re(λ) < 0, and is unstable if there exists a root λ such that

Re(λ) > 0. Therefore the change in stability can occur only if a root λ of equation

(2.16) crosses the imaginary axis.

Suppose that in the case τ = 0, the equilibrium point x∗ is asymptotically stable.
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Let now λ = is with (s ≥ 0) be a root of (2.16), then we get

P (is)

Q(is)
= −e−isτ . (2.17)

The right side of (2.17) traces aut aunit circle in the complex plane on the other

hand, the left-hand side of (2.17) also defines a curve called ratio curve. The change

in stability can accur only if the ratio curve intersect the unit circle, that is if there

exist positive numbers s∗ and τ ∗ for which the equation (2.17) holds as s∗τ ∗ increased

from 0 to 2π.

We find s∗ such that ∣∣∣∣P (is∗)R(is∗)

∣∣∣∣ = 1,
and the critical value τ ∗ is defined by

τ ∗ =
−1
is∗
log

[
−P (is∗)
R(is∗)

]
.

Then for 0 < τ < τ ∗, the equilibrium point is asymptotically stable.

2.3.3 Applications on the stability

Local stability of DDEs is more challenging than for ordinary DEs, due to the infinite

dimensionality of the system. In this paragraph, we consider these two examples.

Example 2.2 [7] Consider the linear delay-differential equation in dimensionless

form.
dx

dt
= hx(t− 1), h ∈ R. (2.18)

The system has only one equilibrium point x∗ = 0. If we consider the exponential

solution x = ceλt so that
dx

dt
= cλeλt, (2.19)
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also

hx(t− 1) = hceλ(t−1) = hceλte−λ, (2.20)

together they give characteristic equation as

λ− he−λ = 0. (2.21)

Since the characteristic equation for the linear DDE is transcendental, there is no

theory about the number of roots, so we consider real and complex solutions separ-

ately.

1. Suppose that λ is real, we can plot z1 = λ and z2 = he−λ and look for intersec-

tions.

Figure 2.1: Intersection of z1 = λ (in green) and z2 = he−λ(in blue), for real λ and
h > 0.

For h > 0,there is a single intresection at a positive λ .Thus, the solution

x = ceλt increases exponentially to infinity as t → ∞, and the equilibrium

x∗ = 0 is unstable.

For h < 0, there may be 0, 1, or 2 intersections. There is a single intersection
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when the curves are tangent. At this point of tangency the curves have the

same slope, and since the line has slope of 1, this means that at the point of

tangency
d

dλ
he−λ = 1,

or

−he−λ = 1,

so that

Figure 2.2: For λ real.and h < 0 Intersections of z1 = λ (in red) and z2 = he−λ, for
hc < h < 0.(in violet), for h = hc (in blue) and for h < hc (in green).

h = −eλ.

Since this point is on the curve z = he−λ, if we replace h, then we get z = −1,

and since the intersection is on the line z = λ, then λ = −1 also.

Therefore, the tangency occurs (and there is a single intersection) when

hc = −e−1.
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• For hc < h < 0, there are two real negative eigenvalues.

• For h = hc = −e−1, there is a single negative eigenvalue.

• For h < hc, there are no real eigenvalues.

By superposition, the solution to the linear DDE is the sum of exponential solu-

tions. So, if h ∈ [hc, 0] the real eigenvalues are negative and so the associated

exponential solutions decay to 0 over time. If h < hc there are no exponentially

decaying or growing components to the solution.

2. Suppose that λ is comlex. then substiute λ = λr + ιλi into characteristic

equation (Eq. 2.21)). we have

λr + ιλi = he−λr−ιλi

= he−λre−ιλi

= he−λr [cos(−λi) + ι sin(−λi)]

= he−λr cos(λi)− ιhe−λr sin(λi).

This implies that  λr = he−λr cos(λi),

λi = −he−λr sin(λi).
(2.22)

Therefore
λr
λi
= − cot(λi), (2.23)

using (Eq(2.22)) and (Eq(2.23)) we get parametric equations for h with λi as

a parameter:

h = − λi
eλi cot(λi) sinλi

. (2.24)

Due to the periodicity of the trigonometric functions, many curves are traced

out as λi is varied from −∞ to ∞, producing an infinite number of curves.
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Figure 2.3: For complex λ. Infinite number of solution curves (in green). The
solution curve for real (in red).

The general solution is x(t;h) =
∑
cne

λnt,where summation is over all values

of λn for the given parameter h ,and x∗ = 0 is a stable equilibrium point for

values of h in which all eigenvalues have negative real parts. That is, for all

values of h between the dashed line and h = 0, h ∈ (hc2 , 0) in the figure, where

hc2 is the value of h in which λr = 0, and λi 6= 0 (the eigenvalue is complex).

From the first equation in. (2.22) if λr = 0, then

0 = h cos(λi), (2.25)

or

λi = ±
π

2
+ kπ, k ∈ Z, (2.26)

and using the second equation in (2.22) ,

λi = −h sin(λi), (2.27)
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or

λi = ±h, (2.28)

and thus

h = ±λi. (2.29)

Equations (2.26) and (2.29) give the values of h where each of an infinite num-

ber of complex eigenvalues cross through λr = 0. We don’t care about positive

h values, since we know that in this case the real eigenvalue is positive, and

hence x∗ = 0 is unstable. For the negative values of h, the first crossing is at

λi =
π
2
and from the equation. (2.29), hc2 = −π

2
. Therefore, x∗ = 0 is stable

for h ∈ (−π
2
, 0).

Example 2.3 [15] Consider the two dimensional system of delayed differential equa-

tions  x′(t) = −x2(t)− y(t− τ),

y′(t) = x(t)− 3y(t) + 2x(t− τ)2.
(2.30)

1. To identify the equilibrium points : We have to solve the equation

 x∗
2
+ y∗ = 0,

x∗ − 3y∗ + 2x∗2 = 0.

So, we obtain 
x∗1 = 0 and y

∗
1 = 0,

or

x∗2 = −
1

5
and y∗2 = −

1

25
.

Therefore the system (2.30) has twe equilibrium points E1 = (0, 0) and E2

(
−1
5
,− 1
25

)
.

2. To analyze stability of equilibrium point E1 = (0, 0) of system (2.30). we’ll use

the geometric method.
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The jacobian matrices are given by

A =

 −2x(t) 0

1 −3


∣∣∣∣∣∣∣
(x∗,y∗)

=

 −2x∗ 0

1 −3

 ,
and

B =

 0 −1

4x(t− τ) 0


∣∣∣∣∣∣∣
(x∗,y∗)

=

 0 −1

4x∗ 0

 .
For the stability of E1 = (0, 0), we have

A =

 0 0

1 −3

 , and B =

 0 −1

0 0

 ,
then we can get the linearized equation

 x′(t)

y′(t)

 = A

 x(t)

y(t)

+B

 x(t− τ)

y(t− τ)

 . (2.31)

When τ = 0, the system (2.31) becomes

X ′(t) = (A+B)X(t), (2.32)

where X = (x, y) and the matrix A+B are given by

A+B =

 0 −1

1 −3

 .

So the characteristic polynome is

det(λI − A−B) = 0 =⇒ λ2 + 3λ+ 1 = 0,
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which has two real negative roots as follows

λ1,2 =
−3±

√
5

2
< 0.

Therefore the system (2.32) is asymptotically stable.

In case of positive delay, i.e. τ > 0, The chracteristic equation for the linearized

equation around the point E1 is given by

det(λI − A−Be−λτ ) = 0 =⇒

∣∣∣∣∣∣∣
λ e−λτ

−1 λ+ 3

∣∣∣∣∣∣∣ = 0 =⇒ λ2 + 3λ+ e−λτ = 0.

(2.33)

Let λ = is, (s > 0) be a purely root of (2.33), and by substituting we get

(is)2 + 3is+ e−isτ = 0,

i. e.

− s2 + 3is = −e−isτ , (2.34)

the right side of equation (2.34) is unit circle and the left side is a ratio carve.

The ratio curve intersects the unit circle if

∣∣−s2 + 3is∣∣ = 1⇒ s4 + 9s2 = 1⇒ (s2)2 + 9s2 − 1 = 0,

=⇒ s2 =
−9±

√
85

2
=⇒ s2 ' 0.10977 =⇒ s∗ ' 0.331319.

So the critical value τ ∗ is give when we substitute the value of s∗ in the equation

(2.34) :

−0.10977 + 3i(0, 331319) = − cos(0.331319τ ∗) + i sin(0.331319τ ∗).

34



Chapter 2. Stabilty of DDE.

So

sin(0.331319τ ∗) = 3× 0.331319 ' 1,

which implay

0.331319τ ∗ =
π

2
⇒ τ ∗ =

π

2× 0.331319 .

Therefore the equilibrium point E1 is asymptotically stable if 0 < τ < τ ∗. (see

Figure).
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Figure 2.4: Stability of E1 = (0, 0) where the historic function (0.1, 0.1) and τ = 1.
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Conclusion

Delay differential equations (DDEs) provide more realistic models in various

fields as biology, chemistry, physics, and economics. This work presents the

existence and uniqueness theorem, which ensures a unique solution under certain

conditions, using the history function rather than initial conditions as in ordinary

differential equations (ODEs). It is important to note that using the step method for

solving DDEs analytically is quite demanding in terms of algebraic manipulations.

To solve these DDEs numerically, we can use MATLAB’s dde23 solver.

The stability analysis of linear and non-linear delay differential equations with a

single delay near equilibrium points can be done by the study of the roots of a

transcendental characteristic equation, whereas there is no general theorem on the

number of these roots which could be infinite. Therefore we present a geometric

approach as a method to study the stability and to determine the effect of delay. We

conclude our study with numerical simulations of one- and two-dimensional systems.
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Annexe A: Matlab codes for

chapter 1

The following programms solve the solution of the delayed logistic model using dde23.

Figure 1.3

% Define the parameters

r = 1; % Growth rate

K = 1000; % Carrying capacity

tau = 1.2; % Time delay

% Define the DDE function

dde_eq = @(t, x, x1) r * x * (1 - x1(1, end)/K);

% Define the time interval

tspan = [0 50];

% Define different initial conditions

x0_values = [500, 1000, 1500];

hold on; % Keep the plot active for multiple curves

% Loop through different initial conditions

for i = 1:numel(x0_values)

% Define the history function (initial condition)
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x0 = @(t) x0_values(i);

% Solve the DDE for the current initial condition

sol = dde23(dde_eq, tau, x0, tspan);

% Plot the solution

plot(sol.x, sol.y, ’LineWidth’, 1.5); % Adjust line width for clarity

end

xlabel(’Time’)

ylabel(’Population’)

title(’Logistic DDE Solution with Different Initial Conditions’)

legend(’x0 = 500’, ’x0 = 1000’, ’x0 = 1500’) % Add legend for clarity

Figure 1.4:

% Define the parameters

r = 1; % Growth rate

K = 1000; % Carrying capacity

tau = 1.7; % Time delay

% Define the DDE function

dde_eq = @(t, x, x1) r * x * (1 - x1(1, end)/K);

% Define the time interval

tspan = [0 50];

% Define different initial conditions

x0_values = [500, 1000, 1500];

hold on; % Keep the plot active for multiple curves

% Loop through different initial conditions

for i = 1:numel(x0_values)
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% Define the history function (initial condition)

x0 = @(t) x0_values(i);

% Solve the DDE for the current initial condition

sol = dde23(dde_eq, tau, x0, tspan);

% Plot the solution

plot(sol.x, sol.y, ’LineWidth’, 1.5); % Adjust line width for clarity

end

xlabel(’Time’)

ylabel(’Population’)

title(’Logistic DDE Solution with Different Initial Conditions’)

legend(’x0 = 500’, ’x0 = 1000’, ’x0 = 1500’) % Add legend for clarity
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Annexe B: Abbreviations and

Notations

DDEs Delay differential equations.

ODEs ordinary differential equations.

x(t) The state of the system at time t.

x(t− τ) The state of the system at a previous time t− τ.

τ The delay.

ϕ(t) The history function.

fx(t, x, y) the jacobian matrix with respect to x.

fy(t, x, y) the jacobian matrix with respect to y.

v constant vector.

D(λ) the transcendental characteristic equation.

Re(λ) the real part of a complex number λ.

42



Abstract 

The study of delay differential equations (DDEs) aims to understand the behavior of systems 

where the current state depends not only on present conditions but also on past states. The 

main objective of this work is to discuss the existence and uniqueness of solutions and give an 

analytic method to solve DDEs. Furthermore, we aim to study the stability of both linear and 

nonlinear equations to determine the conditions under which the system remains stable. The 

analysis will include examining equilibrium points and characteristic equations. 

Keywords: delay differential equations, historic function , method of steps, existence and 

uniqueness of solutions, stability theory. 

 Résumé  

L’étude des équations différentielles à retard ( DDEs) vise à comprendre le comportement des 

systèmes où l’état actuel dépend non seulement des conditions présentes mais aussi des états 

passés. L’objectif principal de ce travail est de discuter l’existence et l’unicité des solutions et 

de donner une méthode analytique pour résoudre les DDEs. De plus, nous présentons l’étude 

de la stabilité des équations linéaires et non linéaires pour déterminer les conditions dans 

lesquelles le système reste stable. L’analyse comprendra l’examen des points d’équilibre et des 

équations caractéristiques. 

Mots-clés : équations différentielles à retard, fonction historique, méthode des étapes, 

existence et unicité des solutions, théorie de stabilité.  

ملخصال  

 الظروف على الحالية الحالة تعتمد لا حيث الأنظمة سلوك فهم إلى تأخيرذات  التفاضلية المعادلات دراسة تهتم

 وحدانية وجود مناقشة هو العمل هذا من الرئيسي الهدف. الماضي الحالة في الزمن على أيضًا ولكنفقط  الحالية

 استقرار دراسة إلى تطرقن ذلك، على علاوة. تأخيرذات  التفاضلية المعادلات لحل تحليلية طريقة وإعطاء الحلول

 نقاط فحص التحليل ضمنسيت. مستقرًا النظام فيها يظل التي الظروف لتحديد الخطية وغير الخطية المعادلات من كل

المميزة. والمعادلات التوازن  

الكلمات المفتاحية: المعادلات التفاضلية ذات تأخير، دالة الماضي، طريقة الخطوات، وجود ووحدانية الحلول، نظرية 

.الاستقرار  
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